Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1343
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Güney, Evren | - |
dc.contributor.author | Ruthmair, Mario | - |
dc.contributor.author | Sinnl, Markus | - |
dc.contributor.author | Leitner, Markus | - |
dc.date.accessioned | 2020-07-29T07:41:26Z | - |
dc.date.available | 2020-07-29T07:41:26Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Güney, E., Leitner, M., Ruthmair, M., & Sinnl, M. (January 01, 2020). Large-scale influence maximization via maximal covering location. European Journal of Operational Research. | en_US |
dc.identifier.issn | 0377-2217 | - |
dc.identifier.uri | https://doi.org/10.1016/j.ejor.2020.06.028 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1343 | - |
dc.description.abstract | Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based on Benders decomposition is proposed and a relation between obtained Benders optimality cuts and submodular cuts for correspondingly defined subsets is established. We introduce preprocessing tests, which allow us to remove variables from the model and develop efficient algorithms for the separation of Benders cuts. Both aspects are shown to be crucial ingredients of the developed branch-and-cut algorithm since real-life social network instances may be very large. In a computational study, the considered variants of this branch-and-cut algorithm outperform the state-of-the-art approach for influence maximization by orders of magnitude. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Large scale optimization | en_US |
dc.subject | Networks | en_US |
dc.subject | Integer programming | en_US |
dc.subject | Influence maximization | en_US |
dc.subject | Stochastic programming | en_US |
dc.title | Large-Scale Influence Maximization Via Maximal Covering Location | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ejor.2020.06.028 | - |
dc.identifier.scopus | 2-s2.0-85087780570 | en_US |
dc.authorid | Evren Güney / 0000-0001-7572-8627 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
dc.identifier.wosquality | Q1 | - |
dc.description.WoSDocumentType | Article | |
dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılan - EVET | en_US |
dc.description.WoSPublishedMonth | Şubat | en_US |
dc.description.WoSIndexDate | 2021 | en_US |
dc.description.WoSYOKperiod | YÖK - 2020-21 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:000577998100011 | en_US |
dc.institutionauthor | Güney, Evren | - |
item.grantfulltext | embargo_20400730 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.01. Department of Industrial Engineering | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Evren_Guney.pdf Until 2040-07-30 | Tam Metin / Full Text | 1.56 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
26
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
25
checked on Nov 16, 2024
Page view(s)
48
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.