Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüney, Evren-
dc.contributor.authorRuthmair, Mario-
dc.contributor.authorSinnl, Markus-
dc.contributor.authorLeitner, Markus-
dc.date.accessioned2020-07-29T07:41:26Z-
dc.date.available2020-07-29T07:41:26Z-
dc.date.issued2020-
dc.identifier.citationGüney, E., Leitner, M., Ruthmair, M., & Sinnl, M. (January 01, 2020). Large-scale influence maximization via maximal covering location. European Journal of Operational Research.en_US
dc.identifier.issn0377-2217-
dc.identifier.urihttps://doi.org/10.1016/j.ejor.2020.06.028-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1343-
dc.description.abstractInfluence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based on Benders decomposition is proposed and a relation between obtained Benders optimality cuts and submodular cuts for correspondingly defined subsets is established. We introduce preprocessing tests, which allow us to remove variables from the model and develop efficient algorithms for the separation of Benders cuts. Both aspects are shown to be crucial ingredients of the developed branch-and-cut algorithm since real-life social network instances may be very large. In a computational study, the considered variants of this branch-and-cut algorithm outperform the state-of-the-art approach for influence maximization by orders of magnitude.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLarge scale optimizationen_US
dc.subjectNetworksen_US
dc.subjectInteger programmingen_US
dc.subjectInfluence maximizationen_US
dc.subjectStochastic programmingen_US
dc.titleLarge-Scale Influence Maximization Via Maximal Covering Locationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ejor.2020.06.028-
dc.identifier.scopus2-s2.0-85087780570en_US
dc.authoridEvren Güney / 0000-0001-7572-8627-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ1-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılan - EVETen_US
dc.description.WoSPublishedMonthŞubaten_US
dc.description.WoSIndexDate2021en_US
dc.description.WoSYOKperiodYÖK - 2020-21en_US
dc.identifier.scopusqualityQ1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000577998100011en_US
dc.institutionauthorGüney, Evren-
item.grantfulltextembargo_20400730-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.01. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Evren_Guney.pdf
  Until 2040-07-30
Tam Metin / Full Text1.56 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

25
checked on Nov 16, 2024

Page view(s)

48
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.