Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMendi, Onur-
dc.contributor.authorKarahoca, Adem-
dc.date.accessioned2021-04-03T13:03:31Z-
dc.date.available2021-04-03T13:03:31Z-
dc.date.issued2020-
dc.identifier.citationMendi, O., & Karahoca, A. (January 01, 2020). Identification of candidate biomarkers and pathways in breast cancer by differential network analysis. International Journal of Data Mining and Bioinformatics, 24, 4, 344-367.en_US
dc.identifier.issn1748-5673-
dc.identifier.urihttps://doi.org/10.1504/ijdmb.2020.113697en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1433-
dc.description.abstractBreast cancer is one of the most malignant cancers in women worldwide. The aim of the present study was to explore the underlying biological mechanisms of breast cancer. For this purpose, we propose a novel framework to reveal mechanisms that drive disease progression in breast cancer by combining prior knowledge in the literature with differential networking methodology. Our integration framework has resulted in the most important genes and interactions by allowing ranking the breast cancer-specific gene network. YY1, SMARCA5, FOXM1, STAT4 and PTTG1 were found to be the most important genes in breast cancer. Functional and pathway enrichment analyses identified numerous pathways that may play a critical role in disease progression. Considering the success of the comparison of the results with the literature, the systemic lupus erythematosus pathway may be a potential target of breast cancer.en_US
dc.language.isoenen_US
dc.publisherInderscience Publishersen_US
dc.relation.ispartofInternational Journal of Data Mining and Bioinformaticsen_US
dc.relation.urihttps://doi.org/10.1504/ijdmb.2020.113697en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDifferential network analysisen_US
dc.subjectBreast canceren_US
dc.subjectMicroarrayen_US
dc.subjectBioinformaticsen_US
dc.titleIdentification of Candidate Biomarkers and Pathways in Breast Cancer by Differential Network Analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1504/IJDMB.2020.113697-
dc.identifier.scopus2-s2.0-85102853861en_US
dc.authoridAdem Karahoca / 0000-0003-4654-6351-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ4-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthMarchen_US
dc.description.WoSIndexDate2020en_US
dc.description.WoSYOKperiodYÖK - 2020-21en_US
dc.identifier.scopusqualityQ4-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage367en_US
dc.identifier.startpage344en_US
dc.identifier.issue4en_US
dc.identifier.volume24en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000630901200004en_US
dc.institutionauthorKarahoca, Adem-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 23, 2024

Page view(s)

40
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.