Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1478
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ünlü, Merve | - |
dc.contributor.author | Arısoy, Ebru | - |
dc.date.accessioned | 2021-04-21T08:14:02Z | - |
dc.date.available | 2021-04-21T08:14:02Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Unlu, M., & Arisoy, E., (January 19, 2021). Uncertainty-Aware Representations for spoken question answering. 2021 IEEE Spoken Language Technology Workshop, SLT 2021; Virtual, Shenzhen; China. p. 943-949. | en_US |
dc.identifier.isbn | 9781728170664 | - |
dc.identifier.uri | https://doi.org/10.1109/SLT48900.2021.9383547 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1478 | - |
dc.description.abstract | This paper describes a spoken question answering system that utilizes the uncertainty in automatic speech recognition (ASR) to mitigate the effect of ASR errors on question answering. Spoken question answering is typically performed by transcribing spoken con-tent with an ASR system and then applying text-based question answering methods to the ASR transcriptions. Question answering on spoken documents is more challenging than question answering on text documents since ASR transcriptions can be erroneous and this degrades the system performance. In this paper, we propose integrating confusion networks with word confidence scores into an end-to-end neural network-based question answering system that works on ASR transcriptions. Integration is performed by generating uncertainty-aware embedding representations from confusion networks. The proposed approach improves F1 score in a question answering task developed for spoken lectures by providing tighter integration of ASR and question answering. | en_US |
dc.description.sponsorship | IEEE Signal Processing Society,The Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2021 IEEE Spoken Language Technology Workshop, SLT 2021 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Listening comprehension | en_US |
dc.subject | Spoken lecture processing | en_US |
dc.subject | Spoken question answering | en_US |
dc.title | Uncertainty-Aware Representations for Spoken Question Answering | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SLT48900.2021.9383547 | - |
dc.identifier.scopus | 2-s2.0-85103946288 | en_US |
dc.authorid | Ebru Arısoy / 0000-0002-8311-3611 | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
dc.description.WoSDocumentType | Proceedings Paper | |
dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | en_US |
dc.description.WoSPublishedMonth | Ocak | en_US |
dc.description.WoSIndexDate | 2021 | en_US |
dc.description.WoSYOKperiod | YÖK - 2020-21 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.startpage | 943-949 | en_US |
dc.department | Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:000663633300128 | en_US |
dc.institutionauthor | Arısoy, Ebru | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | embargo_20400101 | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 02.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
09383547.pdf Until 2040-01-01 | Conference Paper | 704.52 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 23, 2024
Page view(s)
34
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.