Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1519
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMakaroğlu, Didem-
dc.contributor.authorDemir, Şeniz-
dc.contributor.authorAras, Gizem-
dc.contributor.authorÇakır, Altan-
dc.date.accessioned2021-07-27T10:47:43Z-
dc.date.available2021-07-27T10:47:43Z-
dc.date.issued2021-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1519-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2021.115049-
dc.description.abstractNamed entity recognition (NER) is an extensively studied task that extracts and classifies named entities in a text. NER is crucial not only in downstream language processing applications such as relation extraction and question answering but also in large scale big data operations such as real-time analysis of online digital media content. Recent research efforts on Turkish, a less studied language with morphologically rich nature, have demonstrated the effectiveness of neural architectures on well-formed texts and yielded state-of-the art results by formulating the task as a sequence tagging problem. In this work, we empirically investigate the use of recent neural architectures (Bidirectional long short-term memory (BiLSTM) and Transformer-based networks) proposed for Turkish NER tagging in the same setting. Our results demonstrate that transformer-based networks which can model long-range context overcome the limitations of BiLSTM networks where different input features at the character, subword, and word levels are utilized. We also propose a transformer-based network with a conditional random field (CRF) layer that leads to the state-of-the-art result (95.95% f-measure) on a common dataset. Our study contributes to the literature that quantifies the impact of transfer learning on processing morphologically rich languages.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTurkishen_US
dc.subjectNamed entity recognitionen_US
dc.subjectTransfer learningen_US
dc.subjectDigital media industryen_US
dc.subjectCrfen_US
dc.titleAn Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2021.115049-
dc.identifier.scopus2-s2.0-85107884455en_US
dc.authoridYazar ID-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ1-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthKasımen_US
dc.description.WoSIndexDate2021en_US
dc.description.WoSYOKperiodYÖK - 2021-22en_US
dc.identifier.scopusqualityQ1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage11en_US
dc.identifier.startpage1en_US
dc.identifier.issue15en_US
dc.identifier.volume182en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journalExpert Systems with Applicationsen_US
dc.identifier.wosWOS:000688460900011en_US
dc.institutionauthorDemir, Şeniz-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S0957417421004905-main.pdfFull Text / Tam Metin1.17 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 16, 2024

Page view(s)

54
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.