Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1545
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇatak, Yiğit-
dc.contributor.authorAksoy, Can-
dc.contributor.authorÖzkan, Hüseyin-
dc.contributor.authorGüney, Osman Berke-
dc.contributor.authorKoç, Emirhan-
dc.contributor.authorArslan, Şuayb Şefik-
dc.date.accessioned2021-08-24T10:32:42Z
dc.date.available2021-08-24T10:32:42Z
dc.date.issued2021-
dc.identifier.citationGüney, O. B., Koç, E., Aksoy, C., Çatak, Y., Arslan, Ş. S., & Özkan, H. (9-11 June 2021). Adaptive Boosting of DNN Ensembles for Brain-Computer Interface Spellers. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). https://doi.org/10.1109/SIU53274.2021.9477841en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1545-
dc.identifier.urihttps://doi.org/10.1109/SIU53274.2021.9477841-
dc.description.abstractSteady-state visual evoked potentials (SSVEP) are commonly used in brain computer interface (BCI) applications such as spelling systems, due to their advantages over other paradigms. In this study, we develop a method for SSVEP-based BCI speller systems, using a known deep neural network (DNN), which includes transfer and ensemble learning techniques. We test performance of our method on publicly available benchmark and BETA datasets with leave-one-subject-out procedure. Our method consists of two stages. In the first stage, a global DNN is trained using data from all subjects except one subject that is excluded for testing. In the second stage, the global model is fine-tuned to each subject whose data are used in the training. Combining the responses of trained DNNs with different weights for each test subject, rather than an equal weight, provide better performance as brain signals may differ significantly between individuals. To this end, weights of DNNs are learnt with SAMME algorithm with using data belonging to the test subject. Our method significantly outperforms canonical correlation analysis (CCA) and filter bank canonical correlation analysis (FBCCA) methods.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCorrelationen_US
dc.subjectBrain-computer interfacesen_US
dc.subjectBenchmark testingen_US
dc.subjectElectroencephalographyen_US
dc.subjectVisualizationen_US
dc.subjectBoostingen_US
dc.subjectBrain modelingen_US
dc.titleAdaptive Boosting of Dnn Ensembles for Brain-Computer Interface Spellersen_US
dc.title.alternativeDSA Topluluklarının Beyin-Bilgisayar Arayüzleri için Uyarlamalı Güçlendirilmesien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU53274.2021.9477841-
dc.identifier.scopus2-s2.0-85111422982en_US
dc.authoridŞuayb Şefik Arslan / 0000-0003-3779-0731-
dc.authoridŞuayb Şefik Arslan / K-2883-2015-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthHaziranen_US
dc.description.WoSIndexDate2022en_US
dc.description.WoSYOKperiodYÖK - 2021-22en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.startpage1-4en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal2021 29th Signal Processing and Communications Applications Conference (SIU)en_US
dc.identifier.wosWOS:000808100700084en_US
dc.institutionauthorArslan, Şuayb Şefik-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Adaptive_Boosting_of_DNN_Ensembles_for_Brain-Computer_Interface_Spellers.pdf
  Until 2040-01-01
Proceeding papers584.79 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

Page view(s)

40
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.