Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArısoy, Ebru-
dc.contributor.authorFakhan, Enver-
dc.date.accessioned2021-10-09T07:19:14Z
dc.date.available2021-10-09T07:19:14Z
dc.date.issued2020-
dc.identifier.citationE. Fakhan and E. Arısoy, (5-7 Oct. 2020). Domain Adaptation Approaches for Acoustic Modeling," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302343.en_US
dc.identifier.isbn9781728172064-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU49456.2020.9302343-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1568-
dc.description.abstractIn the recent years, with the development of neural network based models, ASR systems have achieved a tremendous performance increase. However, this performance increase mostly depends on the amount of training data and the computational power. In a low-resource data scenario, publicly available datasets can be utilized to overcome data scarcity. Furthermore, using a pre-trained model and adapting it to the in-domain data can help with computational constraint. In this paper we have leveraged two different publicly available datasets and investigate various acoustic model adaptation approaches. We show that 4% word error rate can be achieved using a very limited in-domain data.en_US
dc.description.sponsorshipIstanbul Medipol Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArten_US
dc.subjectAkustik model uyarlamaen_US
dc.subjectYapay sinir ağlarıen_US
dc.subjectTraining dataen_US
dc.subjectOtomatik konuşma tanımaen_US
dc.subjectTransformsen_US
dc.subjectAdaptation modelsen_US
dc.subjectData modelsen_US
dc.subjectComputational modelingen_US
dc.subjectNeural networksen_US
dc.titleDomain Adaptation Approaches for Acoustic Modelingen_US
dc.title.alternativeAkustik modelleme için alana uyarlama yaklaşımlarıen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU49456.2020.9302343-
dc.identifier.scopus2-s2.0-85100309893en_US
dc.authoridEbru Arısoy / 0000-0002-8311-3611-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthOctoberen_US
dc.description.WoSIndexDate2020en_US
dc.description.WoSYOKperiodYÖK - 2020-21en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.startpage1-4en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.relation.journal2020 28th Signal Processing and Communications Applications Conference (SIU)en_US
dc.identifier.wosWOS:000653136100316en_US
dc.institutionauthorArısoy, Ebru-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Domain_Adaptation_Approaches_for_Acoustic_Modeling.pdf
  Until 2040-01-01
Proceedings Paper503.49 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 16, 2024

Page view(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.