Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1571
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karamatlı, Ertuğ | - |
dc.contributor.author | Kırbız, Serap | - |
dc.contributor.author | Hızlı, Çağlar | - |
dc.date.accessioned | 2021-10-09T07:24:28Z | - |
dc.date.available | 2021-10-09T07:24:28Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Ç. Hızlı, E. Karamatlı, A. T. Cemgil and S. Kırbız, (5-7 Oct. 2020). Joint Source Separation and Classification Using Variational Autoencoders," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302092. | en_US |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1571 | - |
dc.identifier.uri | https://doi.org/10.1109/siu49456.2020.9302092 | - |
dc.description.abstract | In this paper, we propose a novel multi-task variational auto encoder (VAE) based approach for joint source separation and classification. The network uses a probabilistic encoder for each sources to map the input data to latent space. The latent representation is then used by a probabilistic decoder for the two tasks: source separation and source classification. Throughout a variety of experiments performed on various image and audio datasets, source separation performance of our method is as good as the method that performs source separation under source class supervision. In addition, the proposed method does not require the class labels and can predict the labels. | en_US |
dc.description.sponsorship | Istanbul Medipol Univ | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Decoding | en_US |
dc.subject | Noma | en_US |
dc.subject | Nanoelectromechanical systems | en_US |
dc.subject | Source separation | en_US |
dc.subject | Graphics processing units | en_US |
dc.subject | Task analysis | en_US |
dc.subject | Probabilistic logic | en_US |
dc.title | Joint Source Separation and Classification Using Variational Autoencoders | en_US |
dc.title.alternative | Değişimli oto-kodlayıcılar kullanılarak birleşik kaynak ayrıştırma ve sınıflandırma | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/siu49456.2020.9302092 | - |
dc.identifier.scopus | 2-s2.0-85100295613 | en_US |
dc.authorid | Serap Kırbız / 0000-0001-7718-3683 | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
dc.description.WoSDocumentType | Proceedings Paper | |
dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | en_US |
dc.description.WoSPublishedMonth | October | en_US |
dc.description.WoSIndexDate | 2020 | en_US |
dc.description.WoSYOKperiod | YÖK - 2020-21 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.startpage | 1-4 | en_US |
dc.department | Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.relation.journal | 2020 28th Signal Processing and Communications Applications Conference (SIU) | en_US |
dc.identifier.wos | WOS:000653136100066 | en_US |
dc.institutionauthor | Kırbız, Serap | - |
item.grantfulltext | embargo_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Joint_Source_Separation_and_Classication_Using_Variational_Autoencoders.pdf Until 2040-01-01 | Proceedings Paper | 452.64 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.