Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1571
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaramatlı, Ertuğ-
dc.contributor.authorKırbız, Serap-
dc.contributor.authorHızlı, Çağlar-
dc.date.accessioned2021-10-09T07:24:28Z-
dc.date.available2021-10-09T07:24:28Z-
dc.date.issued2020-
dc.identifier.citationÇ. Hızlı, E. Karamatlı, A. T. Cemgil and S. Kırbız, (5-7 Oct. 2020). Joint Source Separation and Classification Using Variational Autoencoders," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302092. ‌en_US
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1571-
dc.identifier.urihttps://doi.org/10.1109/siu49456.2020.9302092-
dc.description.abstractIn this paper, we propose a novel multi-task variational auto encoder (VAE) based approach for joint source separation and classification. The network uses a probabilistic encoder for each sources to map the input data to latent space. The latent representation is then used by a probabilistic decoder for the two tasks: source separation and source classification. Throughout a variety of experiments performed on various image and audio datasets, source separation performance of our method is as good as the method that performs source separation under source class supervision. In addition, the proposed method does not require the class labels and can predict the labels.en_US
dc.description.sponsorshipIstanbul Medipol Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecodingen_US
dc.subjectNomaen_US
dc.subjectNanoelectromechanical systemsen_US
dc.subjectSource separationen_US
dc.subjectGraphics processing unitsen_US
dc.subjectTask analysisen_US
dc.subjectProbabilistic logicen_US
dc.titleJoint Source Separation and Classification Using Variational Autoencodersen_US
dc.title.alternativeDeğişimli oto-kodlayıcılar kullanılarak birleşik kaynak ayrıştırma ve sınıflandırmaen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/siu49456.2020.9302092-
dc.identifier.scopus2-s2.0-85100295613en_US
dc.authoridSerap Kırbız / 0000-0001-7718-3683-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthOctoberen_US
dc.description.WoSIndexDate2020en_US
dc.description.WoSYOKperiodYÖK - 2020-21en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.startpage1-4en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.relation.journal2020 28th Signal Processing and Communications Applications Conference (SIU)en_US
dc.identifier.wosWOS:000653136100066en_US
dc.institutionauthorKırbız, Serap-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Joint_Source_Separation_and_Classication_Using_Variational_Autoencoders.pdf
  Until 2040-01-01
Proceedings Paper452.64 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.