Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1687
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTuna Çakar-
dc.contributor.authorKara, Ömer Faruk-
dc.date.accessioned2021-12-14T11:21:12Z
dc.date.available2021-12-14T11:21:12Z
dc.date.issued2021-
dc.identifier.citationKara, Ö. F. (2021). Customer Clustring with Machine Learning. MEF Üniversitesi Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı. ss. 1-24en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1687-
dc.description.abstractWhen analyzing a company that sells in very different product ranges, you are likely to encounter different types of customers. Grouping customers correctly can set standard actions while serving them. Standardization of marketing processes leads to speed and they are easy to improve. While making this classification, the KMeans algorithm was used in Machine Learning. Inertia and Silhouette Points values were used to find the most suitable cluster number. Principal Components Analysis (PCA) was used to show customers with multidimensional features in 2 dimensions.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMakine Öğrenmesi, Kmeans Algoritması, Temel Bileşenler Analizien_US
dc.titleCustomer Clustring With Machine Learningen_US
dc.title.alternativeMakine öğrenmesi ile müşteri kümelemeen_US
dc.typeMaster's Degree Projecten_US
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.identifier.startpage1-24en_US
dc.departmentBilişim Teknolojileri Yüksek Lisans Programıen_US
dc.institutionauthorKara, Ömer-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeMaster's Degree Project-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Files in This Item:
File Description SizeFormat 
FBE_BilişimTeknolojileri_ÖmerFarukKara.pdfYL-Proje Dosyası1.53 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

32
checked on Dec 2, 2024

Download(s)

8
checked on Dec 2, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.