Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1696
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorUtku Koç-
dc.contributor.authorKıran Çelebi, Bilgehan-
dc.date.accessioned2021-12-14T11:21:13Z
dc.date.available2021-12-14T11:21:13Z
dc.date.issued2021-
dc.identifier.citationKıran Çelebi, B. (2021). Product Recommendation for C2C Marketplace With Collaborative Filtering ALS Algorithm. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-34en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1696-
dc.description.abstractIn this project, a machine learning recommendation model is created for an e-commerce company which runs a customer to customer business. The raw data consisted order reviews, order details, product like event information and product details. The explicit and implicit feedbacks are used together and a rating generation logic per user-product couple is applied to create the source data of the model by using Google Cloud BigQuery tool. The ALS algorithm which uses matrix factorization is applied for predicting the top items which have highest ratings for each user. PySpark which is Apache Spark’s python API is used for implementing the ALS model. The best hyperparameters are determined comparing the root mean square error results by using grid search and cross validation and 0.78 of RMSE is reached. The predictions for the empty ratings are sorted then top rated 10 products are taken as recommendations. The evaluation of the model is done by comparing those recommendations with the user preferences. The user preferences are specified by using averagely top rated product categories and most interacted product categories in count. The recommendations are observed to be consistent with the user preferences.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRecommendation Engines, Collaborative Filtering, Matrix Factorization, ALS Algorithm, User Feedback Typesen_US
dc.titleProduct Recommendation for C2c Marketplace With Collaborative Filtering Als Algorithmen_US
dc.title.alternativeE-ticaret sitesi için collaborative filtering ALS algoritması ile ürün önermeen_US
dc.typeMaster's Degree Projecten_US
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.identifier.startpage1-34en_US
dc.departmentBüyük Veri Analitiği Yüksek Lisans Programıen_US
dc.institutionauthorKıran Çelebi, Bilgehan-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeMaster's Degree Project-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Files in This Item:
File Description SizeFormat 
FBE_BüyükVeriAnalitiği_BilgehanKıranCelebi.pdfYL-Proje Dosyası1.29 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

58
checked on Dec 2, 2024

Download(s)

10
checked on Dec 2, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.