Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1701
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHande Küçükaydın-
dc.contributor.authorUncu, Nazlı Tuğçe-
dc.date.accessioned2021-12-14T11:21:14Z
dc.date.available2021-12-14T11:21:14Z
dc.date.issued2021-
dc.identifier.citationUncu, N. T. (2021). Ad Click Prediction Using Machine Learning Algorithms. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-28en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1701-
dc.description.abstractOnline advertising has a great potential to boost business’ revenue. One of the key metrics that defines the success of online ad campaigns is click through rate (CTR) which indicates the total number of clicks received in relation to the total impression. Therefore, the click prediction systems, which have the aim of increasing the click through rates of online advertising campaigns by predicting the clicks, have become essential for businesses. For this reason, predicting whether an advertisement will receive a click from the user or not attracts the attention of researchers from the both industry and academia. In this capstone project, the click prediction is studied by using Avazu’s click logs dataset. The effects of having high cardinality categorical features and imbalanced data are examined during data preprocessing phase and then relevant features are selected to be used in modeling. The methods that are used for this classification problem are decision trees, random forest, k-nearest neighbor, extreme gradient boosting, and logistic regression. According to the results of the study, extreme gradient boosting shows the best performance.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTıklama Tahminleme, Karar Ağacı, Rastgele Orman, k-En Yakın Komşuluk, Ekstrem Grandyan Artırma, Lojistik Regresyonen_US
dc.titleAd Click Prediction Using Machine Learning Algorithmsen_US
dc.title.alternativeMakine öğrenimi algoritmaları ile reklam tıklama tahminlemeen_US
dc.typeMaster's Degree Projecten_US
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.identifier.startpage1-28en_US
dc.departmentBüyük Veri Analitiği Yüksek Lisans Programıen_US
dc.institutionauthorUncu, Nazlı-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeMaster's Degree Project-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Files in This Item:
File Description SizeFormat 
FBE_BüyükVeriAnalitiği_NazlıTuğçeUncu.pdfYL-Proje Dosyası1.54 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

82
checked on Nov 18, 2024

Download(s)

32
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.