Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1720
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorUtku Koç-
dc.contributor.authorAkalın, Selçuk-
dc.date.accessioned2021-12-14T11:21:15Z
dc.date.available2021-12-14T11:21:15Z
dc.date.issued2021-
dc.identifier.citationAkalın, S. (2021). Prediction of Credit Card Default. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-31en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1720-
dc.description.abstractAs profitable customer acquisition becomes more and more critical for the banking sector in terms of competition, the requirement to predict customer defaults with different machine learning algorithms is increasing. Thanks to similar practices, possible damages can be prevented. Due to the rapid change of machine learning with the changing technology, the fields of application and development in different sectors are also changing and developing rapidly. In this study, the aim is to make a comparison over model outcomes and making observations on outcomes to determine the areas that can be developed or researched with running different supervised and unsupervised machine learning algorithms on the final dataset gathered by doing following methods such as key points discovered in exploratory data analysis on an imbalanced credit card dataset, generating different features according to learned key points, eliminating imbalance with different oversampling and undersampling methods.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExploratory Data Analysis, Machine Learning, Banking, Credit Cards, Default Prediction, Oversampling, Undersampling, SMOTE.en_US
dc.titlePrediction of Credit Card Defaulten_US
dc.title.alternativeKredi kartı batık tahminien_US
dc.typeMaster's Degree Projecten_US
dc.authoridSelçuk Akalın / 0000-0001-5241-6524-
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.identifier.startpage1-31en_US
dc.departmentBüyük Veri Analitiği Yüksek Lisans Programıen_US
dc.institutionauthorAkalın, Selçuk-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeMaster's Degree Project-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Show simple item record



CORE Recommender

Page view(s)

34
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.