Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1747
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKırbız, Serap-
dc.contributor.authorHızlı, Çağlar-
dc.date.accessioned2022-03-02T12:46:26Z
dc.date.available2022-03-02T12:46:26Z
dc.date.issued2022-
dc.identifier.citationHızlı, Ç., & Kırbız, S. (January 2022). A Bayesian Allocation Model Based Approach to Mixed Membership Stochastic Blockmodels. Applied Artificial Intelligence, pp 1-23. DOI : https://doi.org/10.1080/08839514.2022.2032923en_US
dc.identifier.issn1087-6545-
dc.identifier.issn0883-9514-
dc.identifier.urihttps://doi.org/10.1080/08839514.2022.2032923-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1747-
dc.description.abstractAlthough detecting communities in networks has attracted considerable recent attention, estimating the number of communities is still an open problem. In this paper, we propose a model, which replicates the generative process of the mixed-membership stochastic block model (MMSB) within the generic allocation framework of Bayesian allocation model (BAM) and BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB considers the observations as Poisson counts generated by a base Poisson process and marks according to the generative process of MMSB. Moreover, the optimal number of communities for BAM-MMSB is estimated by computing the variational approximations of the marginal likelihood for each model order. Experiments on synthetic and real data sets show that the proposed approach promises a generalized model selection solution that can choose not only the model size but also the most appropriate decomposition.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCommunityen_US
dc.subjectInferenceen_US
dc.titleA Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/08839514.2022.2032923-
dc.identifier.scopus2-s2.0-85124183409en_US
dc.authoridSerap Kırbız / 0000-0001-7718-3683-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ2-
dc.description.WoSDocumentTypeArticle; Early Access
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthŞubaten_US
dc.description.WoSIndexDate2022en_US
dc.description.WoSYOKperiodYÖK - 2021-22en_US
dc.identifier.scopusqualityQ2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage23en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.relation.journalApplied Artificial Intelligenceen_US
dc.identifier.wosWOS:000750893600001en_US
dc.institutionauthorKırbız, Serap-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
08839514.2022.pdfFull Text - Article3.61 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

62
checked on Nov 25, 2024

Download(s)

16
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.