Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1780
Title: Predicting Cash Holdings Using Supervised Machine Learning Algorithms
Authors: Özlem, Şirin
Tan, Ömer Faruk
Keywords: Xgboost
Machine learning
Turkey
Cash holdings
Mlnn
Publisher: Springer
Source: Ozlem, S., & Tan, O. F. (May 2022). Predicting cash holdings using supervised machine learning algorithms. Financial Innovation, 8(1), pp.1-19. https://doi.org/10.1186/s40854-022-00351-8
Abstract: This study predicts the cash holdings policy of Turkish firms, given the 20 selected features with machine learning algorithm methods. 211 listed firms in the Borsa Istanbul are analyzed over the period between 2006 and 2019. Multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), decision trees (DT), extreme gradient boosting algorithm (XGBoost) and multi-layer neural networks (MLNN) are used for prediction. Results reveal that MLR, KNN, and SVR provide high root mean square error (RMSE) and low R2 values. Meanwhile, more complex algorithms, such as DT and especially XGBoost, derive higher accuracy with a 0.73 R2 value. Therefore, using advanced machine learning algorithms, we may predict cash holdings considerably.
URI: https://doi.org/10.1186/s40854-022-00351-8
https://hdl.handle.net/20.500.11779/1780
ISSN: 2199-4730
Appears in Collections:Endüstri Mühendisliği Bölümü Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
40854_2022_Article_351.pdfFull Text - Article1.57 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 16, 2024

Page view(s)

52
checked on Nov 18, 2024

Download(s)

8
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.