Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaşdoğan, Çağatay-
dc.contributor.authorNiaz, P. Pouya-
dc.contributor.authorAydın, Yusuf-
dc.contributor.authorGüler, Berk-
dc.contributor.authorMadani, Alireza-
dc.date.accessioned2022-06-22T08:03:47Z
dc.date.available2022-06-22T08:03:47Z
dc.date.issued2022-
dc.identifier.citationBerk, G., Niaz, P. P., Madani, A., Aydın, Y., Basdogan, C.(October 2022). An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning. Mechatronics. pp. 1-14.en_US
dc.identifier.issn0957-4158-
dc.identifier.urihttps://doi.org/10.1016/j.mechatronics.2022.102851-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1788-
dc.description.abstractIn this paper, we propose a supervised learning approach based on an Artificial Neural Network (ANN) model for real-time classification of subtasks in a physical human–robot interaction (pHRI) task involving contact with a stiff environment. In this regard, we consider three subtasks for a given pHRI task: Idle, Driving, and Contact. Based on this classification, the parameters of an admittance controller that regulates the interaction between human and robot are adjusted adaptively in real time to make the robot more transparent to the operator (i.e. less resistant) during the Driving phase and more stable during the Contact phase. The Idle phase is primarily used to detect the initiation of task. Experimental results have shown that the ANN model can learn to detect the subtasks under different admittance controller conditions with an accuracy of 98% for 12 participants. Finally, we show that the admittance adaptation based on the proposed subtask classifier leads to 20% lower human effort (i.e. higher transparency) in the Driving phase and 25% lower oscillation amplitude (i.e. higher stability) during drilling in the Contact phase compared to an admittance controller with fixed parameters.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectManufacturingen_US
dc.subjectDeep learningen_US
dc.subjectHuman intention recognitionen_US
dc.subjectSubtask detectionen_US
dc.subjectAdaptive admittance controlen_US
dc.subjectHuman–robot interactionen_US
dc.subjectCollaborative drillingen_US
dc.titleAn Adaptive Admittance Controller for Collaborative Drilling With a Robot Based on Subtask Classification Via Deep Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mechatronics.2022.102851-
dc.identifier.scopus2-s2.0-85131730118en_US
dc.authoridYusuf Aydın / 0000-0002-4598-5558-
dc.description.PublishedMonthEkimen_US
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ2-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthTemmuzen_US
dc.description.WoSIndexDate2022en_US
dc.description.WoSYOKperiodYÖK - 2021-22en_US
dc.identifier.scopusqualityQ2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage14en_US
dc.identifier.startpage1en_US
dc.identifier.volume86en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.relation.journalMechatronicsen_US
dc.identifier.wosWOS:000814216300006en_US
dc.institutionauthorAydın, Yusuf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S0957415822000800-main.pdfFull Text - Article2.95 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 16, 2024

Page view(s)

46
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.