Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozkan, Tunahan-
dc.contributor.authorCakar, Tuna-
dc.contributor.authorSayar, Alperen-
dc.contributor.authorErtugrul, Seyit-
dc.date.accessioned2022-10-13T11:17:13Z-
dc.date.available2022-10-13T11:17:13Z-
dc.date.issued2022-
dc.identifier.citationBozkan, T., Çakar, T., Sayar, A., & Ertuğrul, S. (15-18 May 2022). Customer Segmentation and Churn Prediction via Customer Metrics. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. Safranbolu, Turkey.en_US
dc.identifier.isbn9781665450928-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864781-
dc.description.abstractIn this study, it is aimed to predict whether customers operating in the factoring sector will continue to trade in the next three months after the last transaction date, using data-driven machine learning models, based on their past transaction movements and their risk, limit and company data. As a result of the models established, Loss Analysis (Churn) of two different customer groups (Real and Legal factory) was carried out. It was estimated by the XGBoost model with an F1 Score of 74% and 77%. Thanks to this modeling, it was aimed to increase the retention rate of customers through special promotions and campaigns to be made to these customer groups, together with the prediction of the customers who will leave. Thanks to the increase in retention rates, a direct contribution to the transaction volume on a company basis was ensured.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof30th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2022 -- Safranbolu, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFactoringen_US
dc.subjectChurn Analysisen_US
dc.subjectMachine Learningen_US
dc.titleCustomer Segmentation and Churn Prediction via Customer Metricsen_US
dc.title.alternativeMüşteri metrikleri üzerinden segmentasyon ve kayıp tahminien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU55565.2022.9864781-
dc.identifier.scopus2-s2.0-85138736238-
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthMayısen_US
dc.description.woscitationindexConference Proceedings Citation Index - Scienceen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.identifier.wosWOS:001307163400120-
dc.institutionauthorÇakar, Tuna-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Customer_Segmentation_and_Churn_Prediction_via_Customer_Metrics.pdfConference Paper888.53 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.

Page view(s)

56
checked on Apr 7, 2025

Download(s)

58
checked on Apr 7, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.