Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYazici, Berkay-
dc.contributor.authorAyhan, Tuba-
dc.contributor.authorÖzdemir, Arda-
dc.date.accessioned2023-03-06T06:53:18Z
dc.date.available2023-03-06T06:53:18Z
dc.date.issued2022-
dc.identifier.citationYazici, B., Ozdemir, A., & Ayhan, T. (2022). System-on-Chip Based Driver Drowsiness Detection and Warning System. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU). https://doi.org/10.1109/asyu56188.2022.9925481?en_US
dc.identifier.isbn9781670000000-
dc.identifier.urihttps://doi.org/10.1109/asyu56188.2022.9925481-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1917-
dc.description.abstractThe aim of this project is to detect the drowsiness level of the driver in the vehicle, to warn the driver and to prevent possible accidents. Percentage Eye Closure (PERCLOS) and Convolutional Neural Network (CNN) are used to detect drowsiness. The system is implemented on Xilinx PYNQ-Z2 development board. The system is tested under real world conditions in real time. A high accuracy rate of 92% and a fast working system with 0.8 s is achieved. A speaker is activated to warn the driver when drowsiness is detected. Moreover, the drowsiness information is sent to the cloud by using a Wi-Fi module.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSocen_US
dc.subjectMachine learningen_US
dc.subjectDriver drowsiness detectionen_US
dc.subjectArtificial intelligenceen_US
dc.titleSystem-On Based Driver Drowsiness Detection and Warning Systemen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU56188.2022.9925481-
dc.identifier.scopus2-s2.0-85142701323en_US
dc.authoridAyhan, Tuba/ 0000-0002-1447-0770-
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Makine Mühendisligi Bölümüen_US
dc.relation.journal2022 Innovations in Intelligent Systems and Applications Conference (ASYU)en_US
dc.institutionauthorYazici, Berkay, Özdemir, Arda, Ayhan,Tuba-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Makine Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
System-on-Chip_Based_Driver_Drowsiness_Detection_and_Warning_System.pdfFull Text - Article414.38 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

Page view(s)

42
checked on Nov 18, 2024

Download(s)

32
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.