Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1959
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tuncer, Suat | - |
dc.contributor.author | Kayan, Ersan | - |
dc.contributor.author | Çakar, Tuna | - |
dc.date.accessioned | 2023-10-18T12:06:11Z | |
dc.date.available | 2023-10-18T12:06:11Z | |
dc.date.issued | 2023 | - |
dc.identifier.citation | Tuncer, S., Çakar, T., & Kayan, E. (2023, July). Noise Effect on Forecasting. In 2023 31st Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. | en_US |
dc.identifier.isbn | 9798350343557 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1959 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU59756.2023.10223792 | - |
dc.description.abstract | The lack of regulation and liquidity in crypto money markets causes higher volatility compared to other financial markets. This situation increases the noise in price change. The high noise and random walk create a problem that cannot be explained by traditional stochastic financial methods. For this reason, a multi-layered deep learning model with an additive attention layer, which uses a single observation in 10-day sequences, was used in this study. Different transformations are used to reduce the noise of the closing values. As a result of the comparisons made between different approaches, it has been revealed that exponential moving averages, to be used as the value to predict, give better results than other conversions and estimation of the original price, since they explain the price better than simple moving averages and reduce the noise of the original price. | en_US |
dc.description.sponsorship | IEEE,TUBITAK BILGEM,Turkcell | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bitcoin | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Noise reduction | en_US |
dc.subject | Deep learning | en_US |
dc.title | Noise Effect on Forecasting | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU59756.2023.10223792 | - |
dc.identifier.scopus | 2-s2.0-85173506781 | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science & Humanities | - |
dc.description.WoSDocumentType | Proceedings Paper | |
dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | en_US |
dc.description.WoSPublishedMonth | Ekim | en_US |
dc.description.WoSIndexDate | 2023 | en_US |
dc.description.WoSYOKperiod | YÖK - 2022-23 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.relation.journal | 31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEY | en_US |
dc.relation.journal | 2023 31st Signal Processing and Communications Applications Conference, Siu | en_US |
dc.identifier.wos | WOS:001062571000045 | en_US |
dc.institutionauthor | Çakar, Tuna | - |
item.grantfulltext | embargo_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Noise_Effect_on_Forecasting.pdf Until 2040-01-01 | Full Text- Article | 732.33 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.