Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTuncer, Suat-
dc.contributor.authorKayan, Ersan-
dc.contributor.authorÇakar, Tuna-
dc.date.accessioned2023-10-18T12:06:11Z
dc.date.available2023-10-18T12:06:11Z
dc.date.issued2023-
dc.identifier.citationTuncer, S., Çakar, T., & Kayan, E. (2023, July). Noise Effect on Forecasting. In 2023 31st Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.en_US
dc.identifier.isbn9798350343557-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1959-
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10223792-
dc.description.abstractThe lack of regulation and liquidity in crypto money markets causes higher volatility compared to other financial markets. This situation increases the noise in price change. The high noise and random walk create a problem that cannot be explained by traditional stochastic financial methods. For this reason, a multi-layered deep learning model with an additive attention layer, which uses a single observation in 10-day sequences, was used in this study. Different transformations are used to reduce the noise of the closing values. As a result of the comparisons made between different approaches, it has been revealed that exponential moving averages, to be used as the value to predict, give better results than other conversions and estimation of the original price, since they explain the price better than simple moving averages and reduce the noise of the original price.en_US
dc.description.sponsorshipIEEE,TUBITAK BILGEM,Turkcellen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBitcoinen_US
dc.subjectForecastingen_US
dc.subjectNoise reductionen_US
dc.subjectDeep learningen_US
dc.titleNoise Effect on Forecastingen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU59756.2023.10223792-
dc.identifier.scopus2-s2.0-85173506781en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science & Humanities-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthEkimen_US
dc.description.WoSIndexDate2023en_US
dc.description.WoSYOKperiodYÖK - 2022-23en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEYen_US
dc.relation.journal2023 31st Signal Processing and Communications Applications Conference, Siuen_US
dc.identifier.wosWOS:001062571000045en_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Noise_Effect_on_Forecasting.pdf
  Until 2040-01-01
Full Text- Article732.33 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.