Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1986
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzkan, Hüseyin-
dc.contributor.authorMusellim, Serkan-
dc.contributor.authorArslan, Suayb S.-
dc.contributor.authorYağan, Mehmet-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorAlp, Nihan-
dc.date.accessioned2023-10-18T12:06:14Z-
dc.date.available2023-10-18T12:06:14Z-
dc.date.issued2023-
dc.identifier.citationYağan, M., Musellim, S., Arslan, S. S., Çakar, T., Alp, N., & Ozkan, H. (2023). A new benchmark dataset for P300 ERP-based BCI applications. Digital Signal Processing, 135, 103950.en_US
dc.identifier.issn1095-4333-
dc.identifier.issn1051-2004-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2023.103950-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1986-
dc.descriptionAcknowledgment This work was supported by The Scientific and Technological Research Council (TUBITAK) of Turkey under Contract 118E268.en_US
dc.descriptionScientific and Technological Research Council (TUBITAK) of Turkey [118E268]en_US
dc.description.abstractBecause of its non-invasive nature, one of the most commonly used event-related potentials in brain -computer interface (BCI) system designs is the P300 electroencephalogram (EEG) signal. The fact that the P300 response can easily be stimulated and measured is particularly important for participants with severe motor disabilities. In order to train and test P300-based BCI speller systems in more realistic high-speed settings, there is a pressing need for a large and challenging benchmark dataset. Various datasets already exist in the literature but most of them are not publicly available, and they either have a limited number of participants or utilize relatively long stimulus duration (SD) and inter-stimulus intervals (ISI). They are also typically based on a 36 target (6 x 6) character matrix. The use of long ISI, in particular, not only reduces the speed and the information transfer rates (ITRs) but also oversimplifies the P300 detection. This leaves a limited challenge to state-of-the-art machine learning and signal processing algorithms. In fact, near-perfect P300 classification accuracies are reported with the existing datasets. Therefore, one certainly needs a large-scale dataset with challenging settings to fully exploit the recent advancements in algorithm design (machine learning and signal processing) and achieve high-performance speller results. To this end, in this article we introduce a new freely-and publicly-accessible P300 dataset obtained using 32-channel EEG, in the hope that it will lead to new research findings and eventually more efficient BCI designs. The introduced dataset comprises 18 participants performing a 40 -target (5 x 8) cued-spelling task, with reduced SD (66.6 ms) and ISI (33.3 ms) for fast spelling. We have also processed, analyzed, and character-classified the introduced dataset and we presented the accuracy and ITR results as a benchmark. The introduced dataset and the codes of our experiments are publicly accessible at https://data .mendeley.com /datasets /vyczny2r4w.(c) 2023 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBrain-computer-interfaceen_US
dc.subjectBrain computer interfaceen_US
dc.subjectElectroencephalogramen_US
dc.subjectPeopleen_US
dc.subjectSpelleren_US
dc.subjectEvent related potentialen_US
dc.subjectEvent-related potentialsen_US
dc.subjectBenchmark dataseten_US
dc.titleA New Benchmark Dataset for P300 Erp-Based Bci Applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dsp.2023.103950-
dc.identifier.scopus2-s2.0-85149907353en_US
dc.description.PublishedMonthŞubaten_US
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ2-
dc.description.WoSDocumentTypearticle-
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılan - EVETen_US
dc.description.WoSPublishedMonthMarten_US
dc.description.WoSIndexDate2023en_US
dc.description.WoSYOKperiodYÖK - 2022-23en_US
dc.identifier.scopusqualityQ2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.volume135en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journalDigital Signal Processingen_US
dc.identifier.wosWOS:000946735800001en_US
dc.institutionauthorArslan, Şuayb Şefik-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S1051200423000453-main.pdf
  Until 2040-01-01
Full Text- Article1.43 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

20
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.