Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaşdoğan, Çağatay-
dc.contributor.authorKüçükyılmaz, Ayşe-
dc.contributor.authorHamad, Yahya M.-
dc.contributor.authorAydın, Yusuf-
dc.contributor.authorAl-Saadi, Zaid-
dc.date.accessioned2023-10-18T12:13:23Z
dc.date.available2023-10-18T12:13:23Z
dc.date.issued2023-
dc.identifier.citationAl-Saadi, Z., Hamad, Y. M., Aydin, Y., Kucukyilmaz, A., & Basdogan, C. (2023, March). Resolving Conflicts During Human-Robot Co-Manipulation. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (pp. 243-251).en_US
dc.identifier.isbn9781450399647-
dc.identifier.issn2167-2148-
dc.identifier.urihttps://doi.org/10.1145/3568162.3576969-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1996-
dc.descriptionUK Research and Innovation, UKRI: EP/S033718/2, EP/T022493/1, EP/V00784Xen_US
dc.descriptionThis work is partially funded by UKRI and CHIST-ERA (HEAP: EP/S033718/2; Horizon: EP/T022493/1; TAS Hub: EP/V00784X).en_US
dc.description.abstractThis paper proposes a machine learning (ML) approach to detect and resolve motion conflicts that occur between a human and a proactive robot during the execution of a physically collaborative task. We train a random forest classifier to distinguish between harmonious and conflicting human-robot interaction behaviors during object co-manipulation. Kinesthetic information generated through the teamwork is used to describe the interactive quality of collaboration. As such, we demonstrate that features derived from haptic (force/torque) data are sufficient to classify if the human and the robot harmoniously manipulate the object or they face a conflict. A conflict resolution strategy is implemented to get the robotic partner to proactively contribute to the task via online trajectory planning whenever interactive motion patterns are harmonious, and to follow the human lead when a conflict is detected. An admittance controller regulates the physical interaction between the human and the robot during the task. This enables the robot to follow the human passively when there is a conflict. An artificial potential field is used to proactively control the robot motion when partners work in harmony. An experimental study is designed to create scenarios involving harmonious and conflicting interactions during collaborative manipulation of an object, and to create a dataset to train and test the random forest classifier. The results of the study show that ML can successfully detect conflicts and the proposed conflict resolution mechanism reduces human force and effort significantly compared to the case of a passive robot that always follows the human partner and a proactive robot that cannot resolve conflicts. © 2023 Copyright is held by the owner/author(s).en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine-learningen_US
dc.subjectConflict resolutionen_US
dc.subjectStatistical testsen_US
dc.subjectClassification (of information)en_US
dc.subjectMachine learning approachesen_US
dc.subjectHapticsen_US
dc.subjectDyadic manipulationen_US
dc.subjectDyadic manipulationen_US
dc.subjectHuman robotsen_US
dc.subjectMan machine systemsen_US
dc.subjectMachine learningen_US
dc.subjectConflict resolutionen_US
dc.subjectRobot programmingen_US
dc.subjectPhysical humanrobot interaction (phri)en_US
dc.subjectHaptic featureen_US
dc.subjectMachine learningen_US
dc.subjectHuman robot interactionen_US
dc.subjectRandom forest classifieren_US
dc.subjectPhysical human-robot interactionen_US
dc.subjectCollaborative tasksen_US
dc.subjectHaptic featuresen_US
dc.titleResolving Conflicts During Human-Robot Co-Manipulationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1145/3568162.3576969-
dc.identifier.scopus2-s2.0-85150378758en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage251en_US
dc.identifier.startpage243en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisligi Bölümüen_US
dc.relation.journal18th Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2023 -- 13 March 2023 through 16 March 2023 -- 187136en_US
dc.relation.journalACM/IEEE International Conference on Human-Robot Interactionen_US
dc.institutionauthorAydın, Yusuf-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
3568162.3576969.pdfFull Text- Article3.74 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 23, 2024

Page view(s)

42
checked on Nov 25, 2024

Download(s)

20
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.