Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2145
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrhan, Gözde-
dc.contributor.authorÇavuşoğlu, Mustafa-
dc.contributor.authorSürmeli, Hulusi Emre-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorAraz, Nusret-
dc.contributor.authorBayram, Bülent-
dc.date.accessioned2023-12-13T09:08:18Z-
dc.date.available2023-12-13T09:08:18Z-
dc.date.issued2023-
dc.identifier.citationAraz, N., Orhan, G., Çavuşoğlu, M., Surmeli, H. E., Bayram, B., & Cakar, T. (2023, September).Development of a knowledge-based multimodal deep learning system for automatic breast lesion segmentation and diagnosis in MG/DMR images In 2023 8th International Conference on Computer Science and Engineering (UBMK). (pp. 578-583).en_US
dc.identifier.isbn9798350340815-
dc.identifier.urihttps://doi.org/10.1109/UBMK59864.2023.10286633-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2145-
dc.description.abstractDeep learning networks (DLNs) rely on labeled training datasets as their fundamental building blocks. While various databases exist worldwide, there is currently no domestic solution available in our country. This project aims to create a domestic database by automatically segmenting breast lesions in MG/DMR images based on their types and developing a knowledge-based multimodal DL-based integrated computer-aided diagnosis system to analyze the images, thereby providing the system with continuous learning capability. Different brands of devices exist for MG/DMR, necessitating the multimodal operation of image processing/artificial intelligence algorithms. To achieve this goal, the network was trained first, and then prelearned data were transferred to enable the training of data from different networks once accurate results are obtained. The developed system has the potential to enable the automatic detection of breast lesions, ensuring fast and high diagnostic accuracy. Additionally, it might also facilitate the retrospective analysis of patients' periodic check-up results.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learning networksen_US
dc.subjectMultimodal image processingen_US
dc.subjectDomestic database creationen_US
dc.subjectComputer-aided diagnosisen_US
dc.subjectBreast lesion segmentationen_US
dc.titleDevelopment of a Knowledge-Based Multimodal Deep Learning System for Automatic Breast Lesion Segmentation and Diagnosis in Mg/Dmr Imagesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK59864.2023.10286633-
dc.identifier.scopus2-s2.0-85177573924en_US
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthEylülen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage583en_US
dc.identifier.startpage578en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal8th International Conference on Computer Science and Engineering - UBMK 2023en_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2343724372.pdf
  Until 2040-01-01
Proceedings Paper715.45 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

30
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.