Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2146
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Öke, Deniz | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Yıldız, Ahmet | - |
dc.contributor.author | Mise, Pelin | - |
dc.contributor.author | Terzibaşıoğlu, Aynur Metin | - |
dc.date.accessioned | 2023-12-13T09:10:19Z | - |
dc.date.available | 2023-12-13T09:10:19Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Yildiz, A., Mise, P., Cakar, T., Terzibasioglu, A. M., & Oke, D. (2023, September). Spine posture detection for office workers with hybrid machine learning. In 2023 8th International Conference on Computer Science and Engineering (UBMK). (pp. 486-491). | en_US |
dc.identifier.isbn | 9798350340815 | - |
dc.identifier.uri | https://doi.org/10.1109/UBMK59864.2023.10286584 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2146 | - |
dc.description.abstract | This study aims to detect bad spine posture using an al-ternative approach that doesn't rely on deep learning or excessive energy. The goal is to improve accuracy and effectiveness without disrupting workflow. A custom dataset was created, numerical inferences were made from posture values, and a hybrid approach using Light Gradient Boosting achieved a 96 % success rate. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Office workers | en_US |
dc.subject | Sitting posture | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Spine posture | en_US |
dc.subject | Light gradient boosting machine | en_US |
dc.title | Spine Posture Detection for Office Workers With Hybrid Machine Learning | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/UBMK59864.2023.10286584 | - |
dc.identifier.scopus | 2-s2.0-85177551231 | en_US |
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | - |
dc.description.PublishedMonth | Eylül | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.endpage | 491 | en_US |
dc.identifier.startpage | 486 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.relation.journal | 8th International Conference on Computer Science and Engineering - UBMK 2023 | en_US |
dc.institutionauthor | Çakar, Tuna | - |
dc.institutionauthor | Yıldız, Ahmet | - |
dc.institutionauthor | Mişe, Pelin | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | embargo_20400101 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
232131232132.pdf Until 2040-01-01 | Proceedings Paper | 468.75 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.