Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2146
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖke, Deniz-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorYıldız, Ahmet-
dc.contributor.authorMise, Pelin-
dc.contributor.authorTerzibaşıoğlu, Aynur Metin-
dc.date.accessioned2023-12-13T09:10:19Z-
dc.date.available2023-12-13T09:10:19Z-
dc.date.issued2023-
dc.identifier.citationYildiz, A., Mise, P., Cakar, T., Terzibasioglu, A. M., & Oke, D. (2023, September). Spine posture detection for office workers with hybrid machine learning. In 2023 8th International Conference on Computer Science and Engineering (UBMK). (pp. 486-491).en_US
dc.identifier.isbn9798350340815-
dc.identifier.urihttps://doi.org/10.1109/UBMK59864.2023.10286584-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2146-
dc.description.abstractThis study aims to detect bad spine posture using an al-ternative approach that doesn't rely on deep learning or excessive energy. The goal is to improve accuracy and effectiveness without disrupting workflow. A custom dataset was created, numerical inferences were made from posture values, and a hybrid approach using Light Gradient Boosting achieved a 96 % success rate.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOffice workersen_US
dc.subjectSitting postureen_US
dc.subjectMachine learningen_US
dc.subjectSpine postureen_US
dc.subjectLight gradient boosting machineen_US
dc.titleSpine Posture Detection for Office Workers With Hybrid Machine Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK59864.2023.10286584-
dc.identifier.scopus2-s2.0-85177551231en_US
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthEylülen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage491en_US
dc.identifier.startpage486en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal8th International Conference on Computer Science and Engineering - UBMK 2023en_US
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorYıldız, Ahmet-
dc.institutionauthorMişe, Pelin-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextembargo_20400101-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
232131232132.pdf
  Until 2040-01-01
Proceedings Paper468.75 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

26
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.