Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2149
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mutlu, İsmail | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Aslan, Yeşim | - |
dc.contributor.author | Yıldız, Ahmet | - |
dc.contributor.author | Sayar, Alperen | - |
dc.contributor.author | Şimsek, Kamil | - |
dc.contributor.author | Tunalı, Mustafa Mert | - |
dc.date.accessioned | 2023-12-13T09:19:38Z | - |
dc.date.available | 2023-12-13T09:19:38Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Tunalι, M. M., Sayar, A., Aslan, Y., Mutlu, İ., Şimşek, K., & Çakar, T. (2023, September).Enhancing quality control in plastic injection production: deep learning-based detection and classification of defects. In 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE. (pp. 498-502). | en_US |
dc.identifier.isbn | 9798350340815 | - |
dc.identifier.uri | https://doi.org/10.1109/UBMK59864.2023.10286748 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2149 | - |
dc.description.abstract | This study investigates the applicability of diverse deep learning techniques in detecting and classifying defects within plastic injection manufacturing processes. The findings derived from the models yield several feasible solutions that hold potential practical implications. Notably, the implementation of the Xception model as a classification framework presents a potential domain for enhancing quality control procedures. The developed models, trained on the prepared data sets, provide compelling evidence for the potential utilization of artificial intelligence technologies in the manufacturing industry. Consequently, this study represents a noteworthy contribution to the limited yet auspicious academic research in the field. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Error detection | en_US |
dc.subject | Classification | en_US |
dc.subject | Quality control | en_US |
dc.subject | Plastic injection | en_US |
dc.subject | Deep learning | en_US |
dc.title | Enhancing Quality Control in Plastic Injection Production: Deep Learning-Based Detection and Classification of Defects | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/UBMK59864.2023.10286748 | - |
dc.identifier.scopus | 2-s2.0-85177594080 | en_US |
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | - |
dc.description.PublishedMonth | Eylül | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.endpage | 502 | en_US |
dc.identifier.startpage | 498 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.relation.journal | UBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering | en_US |
dc.institutionauthor | Çakar, Tuna | - |
dc.institutionauthor | Yıldız, Ahmet | - |
dc.institutionauthor | Tunalı, Mustafa Mert | - |
item.grantfulltext | embargo_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Enhancing_Quality_Control_in_Plastic_Injection_Producttion.pdf Until 2040-01-01 | Proceedings Paper | 405.91 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.