Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2149
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMutlu, İsmail-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorAslan, Yeşim-
dc.contributor.authorYıldız, Ahmet-
dc.contributor.authorSayar, Alperen-
dc.contributor.authorŞimsek, Kamil-
dc.contributor.authorTunalı, Mustafa Mert-
dc.date.accessioned2023-12-13T09:19:38Z-
dc.date.available2023-12-13T09:19:38Z-
dc.date.issued2023-
dc.identifier.citationTunalι, M. M., Sayar, A., Aslan, Y., Mutlu, İ., Şimşek, K., & Çakar, T. (2023, September).Enhancing quality control in plastic injection production: deep learning-based detection and classification of defects. In 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE. (pp. 498-502).en_US
dc.identifier.isbn9798350340815-
dc.identifier.urihttps://doi.org/10.1109/UBMK59864.2023.10286748-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2149-
dc.description.abstractThis study investigates the applicability of diverse deep learning techniques in detecting and classifying defects within plastic injection manufacturing processes. The findings derived from the models yield several feasible solutions that hold potential practical implications. Notably, the implementation of the Xception model as a classification framework presents a potential domain for enhancing quality control procedures. The developed models, trained on the prepared data sets, provide compelling evidence for the potential utilization of artificial intelligence technologies in the manufacturing industry. Consequently, this study represents a noteworthy contribution to the limited yet auspicious academic research in the field.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectError detectionen_US
dc.subjectClassificationen_US
dc.subjectQuality controlen_US
dc.subjectPlastic injectionen_US
dc.subjectDeep learningen_US
dc.titleEnhancing Quality Control in Plastic Injection Production: Deep Learning-Based Detection and Classification of Defectsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK59864.2023.10286748-
dc.identifier.scopus2-s2.0-85177594080en_US
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthEylülen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage502en_US
dc.identifier.startpage498en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journalUBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineeringen_US
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorYıldız, Ahmet-
dc.institutionauthorTunalı, Mustafa Mert-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Enhancing_Quality_Control_in_Plastic_Injection_Producttion.pdf
  Until 2040-01-01
Proceedings Paper405.91 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

56
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.