Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2151
Full metadata record
DC FieldValueLanguage
dc.contributor.authorToktaş, Tolga-
dc.contributor.authorKırbız, Serap-
dc.contributor.authorKayaoğlu, Bora-
dc.date.accessioned2023-12-19T06:03:37Z
dc.date.available2023-12-19T06:03:37Z
dc.date.issued2023-
dc.identifier.citationKayaoğlu, B., Toktaş, T., & Kırbız, S. (2023, October). CNN-Based Emotion Recognition using Data Augmentation and Preprocessing Methods. In 2023 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-4).en_US
dc.identifier.isbn9798350306590-
dc.identifier.urihttps://doi.org/10.1109/ASYU58738.2023.10296784-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2151-
dc.description.abstractIn this paper, a system that recognizes emotion from human faces is designed using Convolutional Neural Networks (CNN). CNN is known to perform well when trained with a large database. The lack of large and balanced publicly available databases that can be used by deep learning methods for emotion recognition is still a challenge. To overcome this problem, the number of data is increased by merging FER+, CK+ and KDEF databases; and preprocessing is applied to the face images in order to reduce the variations in the database. Data augmentation methods are used to reduce the imbalance in the data distribution that still remains despite the increasing number of data in the merged database. The CNN-based method developed using database merging, image preprocessing and data augmentation, achieved emotion recognition with 80% accuracy.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networken_US
dc.subjectEmotion recognitionen_US
dc.subjectPre-processingen_US
dc.subjectData augmentationen_US
dc.titleCnn-Based Emotion Recognition Using Data Augmentation and Preprocessing Methodsen_US
dc.title.alternativeVeri artırma ve işleme yöntemleri kullanarak evrişimli sinir ağı tabanlı duygu tanımaen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU58738.2023.10296784-
dc.identifier.scopus2-s2.0-85178277713en_US
dc.description.PublishedMonthEkimen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.relation.journal2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023en_US
dc.institutionauthorKayaoğlu, Bora-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
CNN-Based_Emotion_Recognition_using_Data_Augmentation_and_Preprocessing_Methods.pdf
  Until 2040-01-01
Full Text - Article486.97 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

38
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.