Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2219
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Savaş, Kerem | - |
dc.contributor.author | Battal, Eray | - |
dc.contributor.author | Özkan, Gözde | - |
dc.date.accessioned | 2024-01-25T08:13:44Z | - |
dc.date.available | 2024-01-25T08:13:44Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Battal, E., Ozkan, G., Savas, K., & Cakar, T. (2023). Fault detection model using measurement data in fiber optic internet lines. In 2023 4th International Informatics and Software Engineering Conference. IEEE. pp.1-4. | en_US |
dc.identifier.isbn | 9798350318036 | - |
dc.identifier.uri | https://doi.org/10.1109/IISEC59749.2023.10391036 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2219 | - |
dc.description | Index Tarihi : 19 Ocak 2024 | en_US |
dc.description.abstract | In this study, a model has been developed to predict potential faults in advance based on performance metrics of various fiber-optic internet lines, as well as alarm (fault data) and performance measurement values from the 5 hours prior to the occurrence of the alarm. Performance metrics that vary over time have been analyzed in a time-series format based on alarm numbers, and anomaly detection methods have been used to label the data for any potential patterns that may occur in the performance metrics specific to the alarm. The labeled data was then fed into a classification model to create a model that enables to detect possible patterns in the relevant performance values for the specific fault type. The best performing model was Random Forest Classifier with accuracy and F1 scores of 0.89 and 0.84 respectively. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Random forest classifier | en_US |
dc.subject | Time series | en_US |
dc.subject | Fiber optic internet lines | en_US |
dc.subject | Predictive maintenance | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Anomaly detection | en_US |
dc.title | Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/IISEC59749.2023.10391036 | - |
dc.identifier.scopus | 2-s2.0-85184665277 | en_US |
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | - |
dc.description.PublishedMonth | Kasım | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı | en_US |
dc.identifier.endpage | 4 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.relation.journal | 2023 4th International Informatics and Software Engineering Conference | en_US |
dc.institutionauthor | Çakar, Tuna | - |
item.grantfulltext | embargo_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
as323sadas_d23.pdf Until 2040-01-01 | Proceedings Paper | 3.41 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.