Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2219
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorSavaş, Kerem-
dc.contributor.authorBattal, Eray-
dc.contributor.authorÖzkan, Gözde-
dc.date.accessioned2024-01-25T08:13:44Z-
dc.date.available2024-01-25T08:13:44Z-
dc.date.issued2023-
dc.identifier.citationBattal, E., Ozkan, G., Savas, K., & Cakar, T. (2023). Fault detection model using measurement data in fiber optic internet lines. In 2023 4th International Informatics and Software Engineering Conference. IEEE. pp.1-4.en_US
dc.identifier.isbn9798350318036-
dc.identifier.urihttps://doi.org/10.1109/IISEC59749.2023.10391036-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2219-
dc.descriptionIndex Tarihi : 19 Ocak 2024en_US
dc.description.abstractIn this study, a model has been developed to predict potential faults in advance based on performance metrics of various fiber-optic internet lines, as well as alarm (fault data) and performance measurement values from the 5 hours prior to the occurrence of the alarm. Performance metrics that vary over time have been analyzed in a time-series format based on alarm numbers, and anomaly detection methods have been used to label the data for any potential patterns that may occur in the performance metrics specific to the alarm. The labeled data was then fed into a classification model to create a model that enables to detect possible patterns in the relevant performance values for the specific fault type. The best performing model was Random Forest Classifier with accuracy and F1 scores of 0.89 and 0.84 respectively.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRandom forest classifieren_US
dc.subjectTime seriesen_US
dc.subjectFiber optic internet linesen_US
dc.subjectPredictive maintenanceen_US
dc.subjectMachine learningen_US
dc.subjectAnomaly detectionen_US
dc.titleFault Detection Model Using Measurement Data in Fiber Optic Internet Linesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IISEC59749.2023.10391036-
dc.identifier.scopus2-s2.0-85184665277en_US
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthKasımen_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal2023 4th International Informatics and Software Engineering Conferenceen_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
as323sadas_d23.pdf
  Until 2040-01-01
Proceedings Paper3.41 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

68
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.