Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüvençli, Mert-
dc.contributor.authorDağ, Hasan-
dc.contributor.authorDoğan, Erkan-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorÖzyürüyen, Burcu-
dc.contributor.authorKiran, Halil-
dc.date.accessioned2024-02-28T12:04:26Z-
dc.date.available2024-02-28T12:04:26Z-
dc.date.issued2023-
dc.identifier.citationGüvençli, M., Kiran,H., Doğa, E., Dağ, H., Özyürüyen, B., Çakar, T. (Eylül 2023). Optimizing collective building management through a machine learning-based decision support system. 4th International Informatics and Software Engineering Conference - Symposium Program. IEEE. pp. 1-4en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2254-
dc.identifier.urihttps://doi.org/10.1109/IISEC59749.2023.10391049-
dc.description.abstractThis study presents the design, implementation, and evaluation of a Decision Support System (DSS) developed for Collective Building Management. Given the potential advantages of machine learning techniques in this domain, the research explores how these techniques can be used to improve collective building management. The dataset consists of 824,932 records and 15 attributes, after preprocessing the data to fill in missing values with the median. The random forest algorithm was chosen for model training and achieved a performance rate of 71.2%. This model can be used to optimize decision processes in collective building management. The proposed prototype is notable for its ability to automatically generate operational plans. In conclusion, machine learning-based DSSs are effective tools for collective building management.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOperational plan automationen_US
dc.subjectRandom forest algorithmen_US
dc.subjectCollective building managementen_US
dc.subjectData preprocessingen_US
dc.subjectDecision support system (dss)en_US
dc.titleOptimizing Collective Building Management Through a Machine Learning-Based Decision Support Systemen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IISEC59749.2023.10391049-
dc.identifier.scopus2-s2.0-85184656384en_US
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthEylülen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal4th International Informatics and Software Engineering Conference - Symposium Programen_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
3423424324.pdf
  Until 2040-01-01
Proceeding Paper279.34 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

44
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.