Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2255
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Obalı, Emir | - |
dc.contributor.author | Çalışkan, Sibel Kırmızıgül | - |
dc.contributor.author | Karani Yılmaz, Veysel | - |
dc.contributor.author | Kara, Erkan | - |
dc.contributor.author | Meşe, Yasemin Kürtcü | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Yıldız, Ayşenur | - |
dc.contributor.author | Hataş, Tuğce Aydın | - |
dc.date.accessioned | 2024-02-28T12:04:36Z | - |
dc.date.available | 2024-02-28T12:04:36Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Hatas, T.A.,Obali, E.,Yildiz, A., Caliskan, S.K., Yilmaz, V. K., Kara, E., Mese, Y.K., Cakar, T. (Eylül 2023). Analyzing customer churn: A comparative study of machine learning models on Pay-TV subscribers in Turkey. IEEE. pp.1-6. | en_US |
dc.identifier.isbn | 9798350318036 | - |
dc.identifier.uri | https://doi.org/10.1109/IISEC59749.2023.10390998 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2255 | - |
dc.description.abstract | Understanding the reasons for customer churn provides added value in terms of retaining existing customers, as customer attrition leads to revenue loss for companies and incurs marketing costs for acquiring new customers. In this study, the 6-month historical data of a Pay-TV company operating in Turkey was used, and due to the imbalanced nature of the dataset on a label basis, the oversampling method was applied. During the model development phase, various artificial learning algorithms (Random Forest, Logistic Regression, KNearest Neighbors, Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier) were utilized, and their performances were compared. Based on the evaluation of success criteria for each model, it was observed that the tree-based Random Forest, Extra Tree Classifier and XGBoost achieved the highest performance for this dataset. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Pay-tv industry | en_US |
dc.subject | Customer retention | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Churn prediction | en_US |
dc.subject | Customer churn | en_US |
dc.title | Analyzing Customer Churn: a Comparative Study of Machine Learning Models on Pay-Tv Subscribers in Turkey | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/IISEC59749.2023.10390998 | - |
dc.identifier.scopus | 2-s2.0-85184666022 | en_US |
dc.authorid | Tuna Çakar / 0000000185947399 | - |
dc.description.PublishedMonth | Eylül | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.relation.journal | 4th International Informatics and Software Engineering Conference - Symposium Program | en_US |
dc.institutionauthor | Çakar, Tuna | - |
dc.institutionauthor | Hataş, Tuğce Aydın | - |
item.grantfulltext | embargo_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
873827324.pdf Until 2040-01-01 | Proceeding Paper | 3.98 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.