Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorObalı, Emir-
dc.contributor.authorÇalışkan, Sibel Kırmızıgül-
dc.contributor.authorKarani Yılmaz, Veysel-
dc.contributor.authorKara, Erkan-
dc.contributor.authorMeşe, Yasemin Kürtcü-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorYıldız, Ayşenur-
dc.contributor.authorHataş, Tuğce Aydın-
dc.date.accessioned2024-02-28T12:04:36Z-
dc.date.available2024-02-28T12:04:36Z-
dc.date.issued2023-
dc.identifier.citationHatas, T.A.,Obali, E.,Yildiz, A., Caliskan, S.K., Yilmaz, V. K., Kara, E., Mese, Y.K., Cakar, T. (Eylül 2023). Analyzing customer churn: A comparative study of machine learning models on Pay-TV subscribers in Turkey. IEEE. pp.1-6.en_US
dc.identifier.isbn9798350318036-
dc.identifier.urihttps://doi.org/10.1109/IISEC59749.2023.10390998-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2255-
dc.description.abstractUnderstanding the reasons for customer churn provides added value in terms of retaining existing customers, as customer attrition leads to revenue loss for companies and incurs marketing costs for acquiring new customers. In this study, the 6-month historical data of a Pay-TV company operating in Turkey was used, and due to the imbalanced nature of the dataset on a label basis, the oversampling method was applied. During the model development phase, various artificial learning algorithms (Random Forest, Logistic Regression, KNearest Neighbors, Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier) were utilized, and their performances were compared. Based on the evaluation of success criteria for each model, it was observed that the tree-based Random Forest, Extra Tree Classifier and XGBoost achieved the highest performance for this dataset.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPay-tv industryen_US
dc.subjectCustomer retentionen_US
dc.subjectMachine learningen_US
dc.subjectChurn predictionen_US
dc.subjectCustomer churnen_US
dc.titleAnalyzing Customer Churn: a Comparative Study of Machine Learning Models on Pay-Tv Subscribers in Turkeyen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IISEC59749.2023.10390998-
dc.identifier.scopus2-s2.0-85184666022en_US
dc.authoridTuna Çakar / 0000000185947399-
dc.description.PublishedMonthEylülen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal4th International Informatics and Software Engineering Conference - Symposium Programen_US
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorHataş, Tuğce Aydın-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
873827324.pdf
  Until 2040-01-01
Proceeding Paper3.98 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

88
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.