Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2291
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Şahin,Sinan | - |
dc.contributor.author | Araz, Nusret | - |
dc.contributor.author | Bakırman, Tolga | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Kulavuz, Bahadır | - |
dc.contributor.author | Bayram, Bülent | - |
dc.contributor.author | Çavuşoğlu, Mustafa | - |
dc.date.accessioned | 2024-06-21T12:19:52Z | - |
dc.date.available | 2024-06-21T12:19:52Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0094-243X | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2291 | - |
dc.identifier.uri | https://doi.org/10.1063/5.0193021 | - |
dc.description.abstract | Breast cancer is one of the most common types of cancer among women. Early diagnosis of breast cancer has vital importance to prevent unexpected losses. A worldwide effort has been made to tackle early detection challenge. Dynamic contrast-enhanced magnetic resonance imaging is a superior imaging system that improves breast cancer diagnosis quality of physicians. Computer Aided Diagnosis systems are used as a complementary tool to improve breast cancer diagnosis. In last decades, various computer aided diagnosis systems have been proposed. However, the state-of-the-art deep learning-based approaches have started to overcome conventional medical image processing methods. In this study, we aimed to detect malignant breast lesions from open access dynamic contrast-enhanced magnetic resonance imagery dataset using most recent YOLOv7 deep learning architecture. 2400 images have been used for training (80%) and testing (20%) of the network. The metrics calculated with the test dataset are 98.54%, 96.42% and 84.40% for mAP@0.50 IoU, mAP@0.75 IoU and mAP, respectively. The results show that YOLOv7 architecture is capable to detect malignant breast lesions from dynamic contrast-enhanced magnetic resonance images efficiently. © 2024 Author(s). | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Physics | en_US |
dc.relation.ispartof | AIP Conference Proceedings -- International Conference of Computational Methods in Sciences and Engineering 2022, ICCMSE 2022 -- 26 October 2022 through 29 October 2022 -- Hybrid, Heraklion -- 198111 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [no keyword available] | en_US |
dc.title | Breast Lesion Detection From Dce-Mri Using Yolov7 | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1063/5.0193021 | - |
dc.identifier.scopus | 2-s2.0-85189248232 | en_US |
dc.authorscopusid | 57772011400 | - |
dc.authorscopusid | 58707506200 | - |
dc.authorscopusid | 15130508500 | - |
dc.authorscopusid | 56247265800 | - |
dc.authorscopusid | 58966765300 | - |
dc.authorscopusid | 58705714400 | - |
dc.authorscopusid | 58706602800 | - |
dc.description.PublishedMonth | Mart | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.volume | 3030 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.institutionauthor | Çakar, Tuna, | - |
dc.identifier.citationcount | 0 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.