Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2291
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin,Sinan-
dc.contributor.authorAraz, Nusret-
dc.contributor.authorBakırman, Tolga-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorKulavuz, Bahadır-
dc.contributor.authorBayram, Bülent-
dc.contributor.authorÇavuşoğlu, Mustafa-
dc.date.accessioned2024-06-21T12:19:52Z-
dc.date.available2024-06-21T12:19:52Z-
dc.date.issued2024-
dc.identifier.issn0094-243X-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2291-
dc.identifier.urihttps://doi.org/10.1063/5.0193021-
dc.description.abstractBreast cancer is one of the most common types of cancer among women. Early diagnosis of breast cancer has vital importance to prevent unexpected losses. A worldwide effort has been made to tackle early detection challenge. Dynamic contrast-enhanced magnetic resonance imaging is a superior imaging system that improves breast cancer diagnosis quality of physicians. Computer Aided Diagnosis systems are used as a complementary tool to improve breast cancer diagnosis. In last decades, various computer aided diagnosis systems have been proposed. However, the state-of-the-art deep learning-based approaches have started to overcome conventional medical image processing methods. In this study, we aimed to detect malignant breast lesions from open access dynamic contrast-enhanced magnetic resonance imagery dataset using most recent YOLOv7 deep learning architecture. 2400 images have been used for training (80%) and testing (20%) of the network. The metrics calculated with the test dataset are 98.54%, 96.42% and 84.40% for mAP@0.50 IoU, mAP@0.75 IoU and mAP, respectively. The results show that YOLOv7 architecture is capable to detect malignant breast lesions from dynamic contrast-enhanced magnetic resonance images efficiently. © 2024 Author(s).en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.ispartofAIP Conference Proceedings -- International Conference of Computational Methods in Sciences and Engineering 2022, ICCMSE 2022 -- 26 October 2022 through 29 October 2022 -- Hybrid, Heraklion -- 198111en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[no keyword available]en_US
dc.titleBreast Lesion Detection From Dce-Mri Using Yolov7en_US
dc.typeConference Objecten_US
dc.identifier.doi10.1063/5.0193021-
dc.identifier.scopus2-s2.0-85189248232en_US
dc.authorscopusid57772011400-
dc.authorscopusid58707506200-
dc.authorscopusid15130508500-
dc.authorscopusid56247265800-
dc.authorscopusid58966765300-
dc.authorscopusid58705714400-
dc.authorscopusid58706602800-
dc.description.PublishedMonthMarten_US
dc.identifier.scopusqualityQ4-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.issue1en_US
dc.identifier.volume3030en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorÇakar, Tuna,-
dc.identifier.citationcount0-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

60
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.