Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2323
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cemgil, Ali Taylan | - |
dc.contributor.author | Kırbız, Serap | - |
dc.contributor.author | Karamatlı, Ertuğ | - |
dc.date.accessioned | 2024-09-08T16:52:56Z | - |
dc.date.available | 2024-09-08T16:52:56Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1095-4333 | - |
dc.identifier.issn | 1051-2004 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2323 | - |
dc.identifier.uri | https://doi.org/10.1016/j.dsp.2024.104694 | - |
dc.description.abstract | In this paper, we propose a decomposition-based weakly-supervised model that utilizes the class labels of the sources present in mixtures. We apply this weak class supervision approach to superimposed handwritten digit images using both non-negative matrix factorization (NMF) and generative adversarial networks (GANs). In this way, we can learn non-linear representations of the sources. The results of our experiments demonstrate that the proposed weakly-supervised methods are viable and mostly on par with the fully supervised baselines. The proposed joint classification and separation approach achieves a weakly-supervised source classification performance of 90.3 in terms of F1 score and outperforms the multi-label source classifier baseline of 68.2 when there are two sources. The separation performance of the proposed method is measured in terms of peak-signal- to-noise-ratio (PSNR) as 16 dB, outperforming the class-informed sparse NMF which achieves separation of two sources with a PSNR value of 13.9 dB. We show that it is possible to replace supervised training with weakly- supervised methods without performance penalty. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Source separation | en_US |
dc.subject | Generative adversarial networks | en_US |
dc.subject | Weak class supervision | en_US |
dc.subject | Source classification | en_US |
dc.title | Source Separation and Classification Using Generative Adversarial Networks and Weak Class Supervision | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.dsp.2024.104694 | - |
dc.identifier.scopus | 2-s2.0-85199866570 | en_US |
dc.authorscopusid | 56246782000 | - |
dc.authorscopusid | 15130945100 | - |
dc.authorscopusid | 23008580500 | - |
dc.description.PublishedMonth | Temmuz | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | - |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q2 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.volume | 154 | en_US |
dc.department | Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:001284910100001 | en_US |
dc.institutionauthor | Kırbız, Serap | - |
item.grantfulltext | embargo_restricted_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Full Text - Article.pdf Restricted Access | 1.42 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.