Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCemgil, Ali Taylan-
dc.contributor.authorKırbız, Serap-
dc.contributor.authorKaramatlı, Ertuğ-
dc.date.accessioned2024-09-08T16:52:56Z-
dc.date.available2024-09-08T16:52:56Z-
dc.date.issued2024-
dc.identifier.issn1095-4333-
dc.identifier.issn1051-2004-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2323-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2024.104694-
dc.description.abstractIn this paper, we propose a decomposition-based weakly-supervised model that utilizes the class labels of the sources present in mixtures. We apply this weak class supervision approach to superimposed handwritten digit images using both non-negative matrix factorization (NMF) and generative adversarial networks (GANs). In this way, we can learn non-linear representations of the sources. The results of our experiments demonstrate that the proposed weakly-supervised methods are viable and mostly on par with the fully supervised baselines. The proposed joint classification and separation approach achieves a weakly-supervised source classification performance of 90.3 in terms of F1 score and outperforms the multi-label source classifier baseline of 68.2 when there are two sources. The separation performance of the proposed method is measured in terms of peak-signal- to-noise-ratio (PSNR) as 16 dB, outperforming the class-informed sparse NMF which achieves separation of two sources with a PSNR value of 13.9 dB. We show that it is possible to replace supervised training with weakly- supervised methods without performance penalty.en_US
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSource separationen_US
dc.subjectGenerative adversarial networksen_US
dc.subjectWeak class supervisionen_US
dc.subjectSource classificationen_US
dc.titleSource Separation and Classification Using Generative Adversarial Networks and Weak Class Supervisionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dsp.2024.104694-
dc.identifier.scopus2-s2.0-85199866570en_US
dc.authorscopusid56246782000-
dc.authorscopusid15130945100-
dc.authorscopusid23008580500-
dc.description.PublishedMonthTemmuzen_US
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.volume154en_US
dc.departmentMühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.wosWOS:001284910100001en_US
dc.institutionauthorKırbız, Serap-
item.grantfulltextembargo_restricted_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Full Text - Article.pdf
  Restricted Access
1.42 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

98
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.