Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2329
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIşlak, Ünal-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorYılmaz, Elif-
dc.contributor.authorArslan, İlker-
dc.date.accessioned2024-09-08T16:52:57Z-
dc.date.available2024-09-08T16:52:57Z-
dc.date.issued2024-
dc.identifier.isbn9798350388961-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2329-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601011-
dc.description.abstractIn this study, new time series forecasting models are developed based on XGBoost, and the similar trajectories method (ST), which can be interpreted as a regression based on nearest neighbors. Both the similar trajectories method and XGBoost model are known to have successful applications in traffic flow prediction. In our case, the focus is on similar trajectories used in the former method, and features based on these trajectories are used in the training of XGBoost. The success of the proposed models is confirmed through metrics such as the mean absolute error. Also, statistical tests are performed among the compared benchmark models. The study is concluded with discussions and questions about how these models can be further developed. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSimilar trajectoriesen_US
dc.subjectTraffic flow forecastingen_US
dc.subjectGradient boostingen_US
dc.subjectTime seriesen_US
dc.titleFeature Enrichment Via Similar Trajectories for Xgboost Based Time Series Forecasting;en_US
dc.title.alternativeBenzer gezingelerle zenginleştirilmiş XGBoost tasarımıyla trafik akışı tahminlemeen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601011-
dc.identifier.scopus2-s2.0-85200913769en_US
dc.authorscopusid59253853100-
dc.authorscopusid55976662000-
dc.authorscopusid56329345400-
dc.authorscopusid57191835158-
dc.authorscopusid59254455700-
dc.authorscopusid59254455800-
dc.authorscopusid59254151900-
dc.description.PublishedMonthTemmuzen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
crisitem.author.dept02.03. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

82
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.