Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2329
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYilmaz, Elif-
dc.contributor.authorIslak, Umit-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorArslan, Ilker-
dc.date.accessioned2024-09-08T16:52:57Z-
dc.date.available2024-09-08T16:52:57Z-
dc.date.issued2024-
dc.identifier.isbn9798350388978-
dc.identifier.isbn9798350388961-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601011-
dc.description.abstractIn this study, new time series forecasting models are developed based on XGBoost, and the similar trajectories method (ST), which can be interpreted as a regression based on nearest neighbors. Both the similar trajectories method and XGBoost model are known to have successful applications in traffic flow prediction. In our case, the focus is on similar trajectories used in the former method, and features based on these trajectories are used in the training of XGBoost. The success of the proposed models is confirmed through metrics such as the mean absolute error. Also, statistical tests are performed among the compared benchmark models. The study is concluded with discussions and questions about how these models can be further developed.en_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTime Seriesen_US
dc.subjectTraffic Flow Forecastingen_US
dc.subjectGradient Boostingen_US
dc.subjectSimilar Trajectoriesen_US
dc.titleFeature Enrichment Via Similar Trajectories for Xgboost Based Time Series Forecastingen_US
dc.title.alternativeBenzer gezingelerle zenginleştirilmiş XGBoost tasarımıyla trafik akışı tahminlemeen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601011-
dc.identifier.scopus2-s2.0-85200913769-
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthTemmuzen_US
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:001297894700230-
dc.institutionauthorÇakar, Tuna-
item.grantfulltextnone-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.

Page view(s)

170
checked on Apr 7, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.