Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2329
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yilmaz, Elif | - |
dc.contributor.author | Islak, Umit | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Arslan, Ilker | - |
dc.date.accessioned | 2024-09-08T16:52:57Z | - |
dc.date.available | 2024-09-08T16:52:57Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388978 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10601011 | - |
dc.description.abstract | In this study, new time series forecasting models are developed based on XGBoost, and the similar trajectories method (ST), which can be interpreted as a regression based on nearest neighbors. Both the similar trajectories method and XGBoost model are known to have successful applications in traffic flow prediction. In our case, the focus is on similar trajectories used in the former method, and features based on these trajectories are used in the training of XGBoost. The success of the proposed models is confirmed through metrics such as the mean absolute error. Also, statistical tests are performed among the compared benchmark models. The study is concluded with discussions and questions about how these models can be further developed. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | - |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Time Series | en_US |
dc.subject | Traffic Flow Forecasting | en_US |
dc.subject | Gradient Boosting | en_US |
dc.subject | Similar Trajectories | en_US |
dc.title | Feature Enrichment Via Similar Trajectories for Xgboost Based Time Series Forecasting | en_US |
dc.title.alternative | Benzer gezingelerle zenginleştirilmiş XGBoost tasarımıyla trafik akışı tahminleme | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU61531.2024.10601011 | - |
dc.identifier.scopus | 2-s2.0-85200913769 | - |
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | - |
dc.description.PublishedMonth | Temmuz | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:001297894700230 | - |
dc.institutionauthor | Çakar, Tuna | - |
item.grantfulltext | none | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.