Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2333
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Öner, Kevser Setenay | - |
dc.contributor.author | Karaoğlu Akıncı, Zeynep | - |
dc.contributor.author | Arslan, İlker | - |
dc.contributor.author | Bulut, Nurgül | - |
dc.contributor.author | Çakar, Tuna | - |
dc.date.accessioned | 2024-09-08T16:52:57Z | - |
dc.date.available | 2024-09-08T16:52:57Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2333 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10600935 | - |
dc.description.abstract | This study compares artificial learning algorithms and logistic regression models in determining different levels of Alzheimer's disease (AD). The research uses demographic, genetic, and neurocognitive inventory results obtained from the National Alzheimer's Coordination Center (NACC) database, along with brain volume/thickness measurements derived from MRI scanners. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were employed to determine the 4 different ordinal levels of AD. Although there were similarities between the accuracy rate, F1 score, AUC value, and sensitivity, specificity, and precision performance measures of each class, the highest classification rate was achieved by the Random Forest model where the oversampling was not applied. (F1 score: 0.86; accuracy: 0.86 and AUC: 0.95). The outputs of the model with the best performance were explained with the SHAP (SHapley Additive exPlanations) method. These findings indicate that non-invasive markers and artificial learning models can be used effectively in early diagnosis and decision support systems to predict different levels of Alzheimer's disease. © 2024 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Alzheimer's disease | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | National alzheimer's coordinating center | en_US |
dc.title | Determination of Alzheimer's Disease Levels by Ordinal Logistic Regression and Artificial Learning Algorithms; | en_US |
dc.title.alternative | Alzheimer Hastalığı Seviyelerinin Sıralı Lojistik Regresyon ve Yapay Öğrenme Algoritmaları Yöntemiyle Belirlenmesi | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU61531.2024.10600935 | - |
dc.identifier.scopus | 2-s2.0-85200842141 | en_US |
dc.authorscopusid | 59254325700 | - |
dc.authorscopusid | 56329345400 | - |
dc.authorscopusid | 57191835158 | - |
dc.authorscopusid | 59254026300 | - |
dc.authorscopusid | 56105162100 | - |
dc.description.PublishedMonth | Mayıs | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.institutionauthor | Çakar, Tuna | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.03. Department of Mechanical Engineering | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.