Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2337
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Filiz, Gozde | - |
dc.contributor.author | Bodur, Tolga | - |
dc.contributor.author | Yaslidag, Nihal | - |
dc.contributor.author | Sayar, Alperen | - |
dc.contributor.author | Çakar, Tuna | - |
dc.date.accessioned | 2024-09-08T16:52:58Z | - |
dc.date.available | 2024-09-08T16:52:58Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388978 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10601148 | - |
dc.description.abstract | This study examines the transformation in the financial services sector, particularly in banking, driven by the rapid development of technology and the widespread use of big data, and its impact on credit prediction processes. The developed credit prediction model aims to more accurately predict customers' credit repayment capacities. In pursuit of this goal, demographic and financial data along with credit histories of customers have been utilized to employ data preprocessing techniques and test various classification algorithms. Findings indicate that models developed with XGBoost and CATBoost algorithms exhibit the highest performance, while the effective use of feature engineering techniques is revealed to enhance the model's accuracy and reliability. The research highlights the potential for financial institutions to gain a competitive advantage in risk management and customer relationship management by leveraging machine learning models. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | - |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Credit Prediction Models | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Risk Prediction | en_US |
dc.title | Predicting Credit Repayment Capacity With Machine Learning Models | en_US |
dc.title.alternative | Kredi Geri Ödeme Kapasitesinin Makine Öğrenimi Modelleriyle Tahmini | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU61531.2024.10601148 | - |
dc.identifier.scopus | 2-s2.0-85200887297 | - |
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | - |
dc.description.PublishedMonth | Temmuz | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:001297894700334 | - |
dc.institutionauthor | Çakar, Tuna | - |
item.grantfulltext | embargo_20400101 | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Full Text - Article.pdf Until 2040-01-01 | 234.97 kB | Adobe PDF | View/Open |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.