Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYaşlıdağ, Nihal-
dc.contributor.authorBodur, Tolga-
dc.contributor.authorFiliz, Gözde-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorSayar, Alperen-
dc.date.accessioned2024-09-08T16:52:58Z-
dc.date.available2024-09-08T16:52:58Z-
dc.date.issued2024-
dc.identifier.isbn9798350388961-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2337-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601148-
dc.description.abstractThis study examines the transformation in the financial services sector, particularly in banking, driven by the rapid development of technology and the widespread use of big data, and its impact on credit prediction processes. The developed credit prediction model aims to more accurately predict customers' credit repayment capacities. In pursuit of this goal, demographic and financial data along with credit histories of customers have been utilized to employ data preprocessing techniques and test various classification algorithms. Findings indicate that models developed with XGBoost and CATBoost algorithms exhibit the highest performance, while the effective use of feature engineering techniques is revealed to enhance the model's accuracy and reliability. The research highlights the potential for financial institutions to gain a competitive advantage in risk management and customer relationship management by leveraging machine learning models. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine learningen_US
dc.subjectCredit prediction modelsen_US
dc.subjectRisk predictionen_US
dc.titlePredicting Credit Repayment Capacity With Machine Learning Models;en_US
dc.title.alternativeKredi Geri Ödeme Kapasitesinin Makine Öğrenimi Modelleriyle Tahminien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601148-
dc.identifier.scopus2-s2.0-85200887297en_US
dc.authorscopusid58634073400-
dc.authorscopusid59254900000-
dc.authorscopusid59254004800-
dc.authorscopusid57904383300-
dc.authorscopusid56329345400-
dc.description.PublishedMonthTemmuzen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Full Text - Article.pdf
  Until 2040-01-01
234.97 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

78
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.