Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFiliz, Gozde-
dc.contributor.authorBodur, Tolga-
dc.contributor.authorYaslidag, Nihal-
dc.contributor.authorSayar, Alperen-
dc.contributor.authorÇakar, Tuna-
dc.date.accessioned2024-09-08T16:52:58Z-
dc.date.available2024-09-08T16:52:58Z-
dc.date.issued2024-
dc.identifier.isbn9798350388978-
dc.identifier.isbn9798350388961-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601148-
dc.description.abstractThis study examines the transformation in the financial services sector, particularly in banking, driven by the rapid development of technology and the widespread use of big data, and its impact on credit prediction processes. The developed credit prediction model aims to more accurately predict customers' credit repayment capacities. In pursuit of this goal, demographic and financial data along with credit histories of customers have been utilized to employ data preprocessing techniques and test various classification algorithms. Findings indicate that models developed with XGBoost and CATBoost algorithms exhibit the highest performance, while the effective use of feature engineering techniques is revealed to enhance the model's accuracy and reliability. The research highlights the potential for financial institutions to gain a competitive advantage in risk management and customer relationship management by leveraging machine learning models.en_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCredit Prediction Modelsen_US
dc.subjectMachine Learningen_US
dc.subjectRisk Predictionen_US
dc.titlePredicting Credit Repayment Capacity With Machine Learning Modelsen_US
dc.title.alternativeKredi Geri Ödeme Kapasitesinin Makine Öğrenimi Modelleriyle Tahminien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601148-
dc.identifier.scopus2-s2.0-85200887297-
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthTemmuzen_US
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:001297894700334-
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Full Text - Article.pdf
  Until 2040-01-01
234.97 kBAdobe PDFView/Open
Show simple item record



CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.

Page view(s)

152
checked on Apr 7, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.