Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozkan, Tunahan-
dc.contributor.authorYekdaneh, Asena-
dc.contributor.authorFiliz, Gözde-
dc.contributor.authorAlbayrak, Asya-
dc.contributor.authorArman, Nilay-
dc.contributor.authorAktay Ayaz, Nuray-
dc.contributor.authorÇakar,Tuna-
dc.date.accessioned2024-09-08T16:52:58Z-
dc.date.available2024-09-08T16:52:58Z-
dc.date.issued2024-
dc.identifier.isbn9798350388961-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601111-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2338-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description.abstractThis study assesses the potential of smartwatch technology in monitoring adolescents' physical activity and health parameters. It focuses on the role of physical activity in preventing chronic diseases and improving quality of life. The primary aim of the project is to perform statistical analysis of the large data sets collected from both healthy adolescents and those with chronic rheumatic diseases, and to develop a machine learning-based classification model to distinguish between these two groups. This analysis highlights the issue of physical inactivity observed during the Covid-19 pandemic, while showcasing the capacity of technology to offer solutions. The study aims to evaluate the collected data in a way that forms the basis for personalized activity plans for adolescents, demonstrating how wearable technology and big data can be effectively used in health services and to promote physical activity. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBig dataen_US
dc.subjectPhysical activityen_US
dc.subjectCovid-19 pandemicen_US
dc.subjectAdolescent healthen_US
dc.subjectSmartwatch technologyen_US
dc.titlePhysical Activity Monitoring With Smartwatch Technology in Adolescents and Obtaining Big Data: Preliminary Findings;en_US
dc.title.alternativeAdölesanlarda Akıllı Saat Teknolojisi ile Fiziksel Aktivite İzleme ve Büyük Veri Elde Edilmesi: Ön Sonuçlaren_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601111-
dc.identifier.scopus2-s2.0-85200832800en_US
dc.authorscopusid58634073400-
dc.authorscopusid57201479637-
dc.authorscopusid24328700900-
dc.authorscopusid57828515200-
dc.authorscopusid57243397400-
dc.authorscopusid57903753900-
dc.authorscopusid57903753900-
dc.description.PublishedMonthTemmuzen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_restricted_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Sunum Dosyası.pdf
  Restricted Access
238.8 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

100
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.