Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2356
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrias, Yassine-
dc.contributor.authorSiouane, Alaa Eddine-
dc.contributor.authorÇakar, Tuna-
dc.date.accessioned2024-10-05T18:38:43Z-
dc.date.available2024-10-05T18:38:43Z-
dc.date.issued2024-
dc.identifier.isbn9783031602740-
dc.identifier.isbn9783031593185-
dc.identifier.isbn9783031593178-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-59318-5_10-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2356-
dc.description.abstractIn this article, we introduce a new approach for soil profile prediction using Quantum Recurrent Neural Networks (QRNNs). By harnessing the power of quantum computing, QRNNs present a promising solution to overcome the limitations of conventional soil mapping techniques. We begin by proposing a classical Recurrent Neural Networks (RNNs) architecture for soil profiles prediction, followed by the design of its quantum counterpart with QRNNs. Focusing on the application of our model in Turkiye, we leverage geospatial data from diverse sources, including climate, vegetation, and land relief data, to showcase the efficacy of QRNNs in soil classification and resource monitoring. Our results reveal a remarkable accuracy score and computational efficiency. Moreover, we delve into the broader implications of quantum computing for digital mapping and explore potential avenues for future research. Emphasizing the integration of quantum computing techniques with digital soil mapping, we foresee a promising advancement in sustainable soil management practices, aiding decision-making processes in agriculture, environmental planning, and natural resource management.en_US
dc.language.isoenen_US
dc.publisherSpringer international Publishing Agen_US
dc.relation.ispartofSymposium on Quantum Sciences, Applications and Challenges (QSAC) -- SEP 24-25, 2023 -- Alger Acad Sci & Tech, Algiers, ALGERIAen_US
dc.relation.ispartofseriesInformation Systems Engineering and Management-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectQuantum computingen_US
dc.subjectRecurrent neural networksen_US
dc.subjectQuantum machine learningen_US
dc.subjectDigital soil mappingen_US
dc.titleQuantum Recurrent Neural Networks for Soil Profiles Prediction in Turkiyeen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-031-59318-5_10-
local.message.claim2024-10-23T16:41:21.016+0300*
local.message.claim|rp00139*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage133en_US
dc.identifier.startpage120en_US
dc.identifier.volume2en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:001298001300010en_US
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorDrias, Yassine-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
crisitem.author.dept02.02. Department of Computer Engineering-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

28
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.