Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKırbız, S.-
dc.date.accessioned2024-12-05T18:22:54Z-
dc.date.available2024-12-05T18:22:54Z-
dc.date.issued2024-
dc.identifier.issn2619-9831-
dc.identifier.urihttps://doi.org/10.5152/electrica.2024.24098-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2439-
dc.description.abstractFacial emotion recognition (FER) has been an emerging research topic in recent years. Recent automatic FER systems generally apply deep learning methods and focus on two important issues: lack of sufficient labeled training data and variations in images such as illumination, pose, or expression-related variations among different cultures. Although Convolutional Neural Networks (CNNs) are widely used in automatic FER, they cannot be used when the number of layers is large. Therefore, a residual technique is applied to CNNs and this architecture is named residual neural network. In this paper, an automatic facial emotion recognition method using residual networks with random data augmentation is proposed on a merged FER dataset consisting of 41,598 facial images of size 48 × 48 pixels from seven basic emotion classes. Experimental results show that ResNet34 with data augmentation performs better than CNN with a classification accuracy of 81%. © 2024 Istanbul University. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherIstanbul Universityen_US
dc.relation.ispartofElectricaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectFacial Emotion Recognitionen_US
dc.subjectResidual Neural Networksen_US
dc.subjectResNet34en_US
dc.titleFacial Emotion Recognition Using Residual Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.5152/electrica.2024.24098-
dc.identifier.scopus2-s2.0-85208717593-
dc.authorscopusid23008580500-
dc.identifier.scopusqualityQ3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage825en_US
dc.identifier.startpage818en_US
dc.identifier.issue3en_US
dc.identifier.volume24en_US
dc.departmentMef Universityen_US
dc.institutionauthorKırbız, S.-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

28
checked on Jan 13, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.