Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2459
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGökmen, Muhittin-
dc.contributor.authorSariyanidi, E.-
dc.contributor.authorYankowitz, L.-
dc.contributor.authorZampella, C.J.-
dc.contributor.authorSchultz, R.T.-
dc.contributor.authorTunç, B.-
dc.date.accessioned2025-01-05T18:25:05Z-
dc.date.available2025-01-05T18:25:05Z-
dc.date.issued2024-
dc.identifier.isbn979-840070462-8-
dc.identifier.urihttps://doi.org/10.1145/3678957.3685711-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2459-
dc.descriptionDisney Research; Educational Testing Service (ETS); Electronic Arts (EA); Google; Openstreams.aien_US
dc.description.abstractHead movements play a crucial role in social interactions. The quantifcation of communicative movements such as nodding, shaking, orienting, and backchanneling is signifcant in behavioral and mental health research. However, automated localization of such head movements within videos remains challenging in computer vision due to their arbitrary start and end times, durations, and frequencies. In this work, we introduce a novel and efcient coding system for head movements, grounded in Birdwhistell’s kinesics theory, to automatically identify basic head motion units such as nodding and shaking. Our approach frst defnes the smallest unit of head movement, termed kine, based on the anatomical constraints of the neck and head. We then quantify the location, magnitude, and duration of kines within each angular component of head movement. Through defning possible combinations of identifed kines, we defne a higher-level construct, kineme, which corresponds to basic head motion units such as nodding and shaking. We validate the proposed framework by predicting autism spectrum disorder (ASD) diagnosis from video recordings of interacting partners. We show that the multi-scale property of the proposed framework provides a signifcant advantage, as collapsing behavior across temporal scales reduces performance consistently. Finally, we incorporate another fundamental behavioral modality, namely speech, and show that distinguishing between speaking-and listening-time head movements signifcantly improves ASD classifcation performance. © 2024 Copyright held by the owner/author(s).en_US
dc.description.sponsorshipIntellectual and Developmental Disabilities Research Center, IDDRC; National Institute of Child Health and Human Development, NICHD; National Institute of Mental Health, NIMH, (R01MH122599, 5P50HD105354-02, R21HD102078, R01MH118327); National Institute of Mental Health, NIMH; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (1059B192300279); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAKen_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofACM International Conference Proceeding Series -- 26th International Conference on Multimodal Interaction, ICMI 2024 -- 4 November 2024 through 8 November 2024 -- San Jose -- 204690en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutismen_US
dc.subjectComputer Visionen_US
dc.subjectHead Movementsen_US
dc.subjectKinesicsen_US
dc.subjectPsychologyen_US
dc.titleDetecting Autism From Head Movements Using Kinesicsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1145/3678957.3685711-
dc.identifier.scopus2-s2.0-85212589877-
dc.authoridMuhittin Gökmen / 0000-0001-7290-199X-
dc.authorscopusid55946709500-
dc.authorscopusid43261751100-
dc.authorscopusid57203241986-
dc.authorscopusid57214989540-
dc.authorscopusid7401556290-
dc.authorscopusid36062061700-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage354en_US
dc.identifier.startpage350en_US
dc.departmentMef Universityen_US
dc.institutionauthorGökmen, Muhittin-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

20
checked on Jan 13, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.