Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2496
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFiliz, G.-
dc.contributor.authorYıldız, A.-
dc.contributor.authorKara, E.-
dc.contributor.authorAltıntaş, S.-
dc.contributor.authorÇakar, T.-
dc.date.accessioned2025-02-05T18:54:19Z-
dc.date.available2025-02-05T18:54:19Z-
dc.date.issued2024-
dc.identifier.isbn9798350379433-
dc.identifier.urihttps://doi.org/10.1109/ASYU62119.2024.10756993-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2496-
dc.descriptionIEEE SMC; IEEE Turkiye Sectionen_US
dc.description.abstractThe primary objective of this research is to employ artificial intelligence, machine learning, and neural networks in order to construct a network traffic prediction model. The analysis of network traffic data obtained from a digital media and entertainment provider operating in Turkey is conducted through the application of multivariate time-series analysis techniques in order to get insights into the temporal patterns and trends. In model development, Vector Autoregression (VAR), Vector Error Correction Model (VECM), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) algorithms have been utilized. LSTM and GRU models have performed better with low Mean Absolute Percentage Error (MAPE) and high R-squared Score (R2). LSTM model has reached 0.98 R2 and 8.95% MAPE. These results indicate that the models can be utilized in network management optimization as resource allocation, congestion detection, anomaly detection, and quality of service. © 2024 IEEE.en_US
dc.description.sponsorshipDSmart R&D Centeren_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectLong-Short Term Memoryen_US
dc.subjectMachine Learningen_US
dc.subjectNetwork Traffic Forecastingen_US
dc.subjectNeural Networksen_US
dc.titleArtificial Intelligence Driven Multivariate Time Series Analysis of Network Traffic Predictionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU62119.2024.10756993-
dc.identifier.scopus2-s2.0-85213347300-
dc.authorscopusid58634073400-
dc.authorscopusid58876694800-
dc.authorscopusid58876482000-
dc.authorscopusid59490536100-
dc.authorscopusid56329345400-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorFiliz, Gözde-
dc.institutionauthorÇakar, Tuna-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeConference Object-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.

Page view(s)

70
checked on Apr 7, 2025

Download(s)

14
checked on Apr 7, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.