Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2496
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Filiz, G. | - |
dc.contributor.author | Yıldız, A. | - |
dc.contributor.author | Kara, E. | - |
dc.contributor.author | Altıntaş, S. | - |
dc.contributor.author | Çakar, T. | - |
dc.date.accessioned | 2025-02-05T18:54:19Z | - |
dc.date.available | 2025-02-05T18:54:19Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350379433 | - |
dc.identifier.uri | https://doi.org/10.1109/ASYU62119.2024.10756993 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2496 | - |
dc.description | IEEE SMC; IEEE Turkiye Section | en_US |
dc.description.abstract | The primary objective of this research is to employ artificial intelligence, machine learning, and neural networks in order to construct a network traffic prediction model. The analysis of network traffic data obtained from a digital media and entertainment provider operating in Turkey is conducted through the application of multivariate time-series analysis techniques in order to get insights into the temporal patterns and trends. In model development, Vector Autoregression (VAR), Vector Error Correction Model (VECM), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) algorithms have been utilized. LSTM and GRU models have performed better with low Mean Absolute Percentage Error (MAPE) and high R-squared Score (R2). LSTM model has reached 0.98 R2 and 8.95% MAPE. These results indicate that the models can be utilized in network management optimization as resource allocation, congestion detection, anomaly detection, and quality of service. © 2024 IEEE. | en_US |
dc.description.sponsorship | DSmart R&D Center | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Long-Short Term Memory | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Network Traffic Forecasting | en_US |
dc.subject | Neural Networks | en_US |
dc.title | Artificial Intelligence Driven Multivariate Time Series Analysis of Network Traffic Prediction | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/ASYU62119.2024.10756993 | - |
dc.identifier.scopus | 2-s2.0-85213347300 | - |
dc.authorscopusid | 58634073400 | - |
dc.authorscopusid | 58876694800 | - |
dc.authorscopusid | 58876482000 | - |
dc.authorscopusid | 59490536100 | - |
dc.authorscopusid | 56329345400 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.institutionauthor | Filiz, Gözde | - |
dc.institutionauthor | Çakar, Tuna | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Artificial_Intelligence_Driven_Multivariate_Time_Series_Analysis_of_Network_Traffic_Prediction.pdf | 280.24 kB | Adobe PDF | View/Open |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.