Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/406
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGökmen, Muhittin-
dc.contributor.authorBaşaran, Emrah-
dc.contributor.authorKamasak, Mustafa E.-
dc.date.accessioned2019-02-20T14:03:25Z
dc.date.available2019-02-20T14:03:25Z
dc.date.issued2018-
dc.identifier.citationBasaran, E., Gokmen, M., & Kamasak, M.E. An Efficient Multiscale Scheme Using Local Zernike Moments for Face Recognition. Appl. Sci. 2018, 8, 827.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/406-
dc.identifier.urihttps://doi.org/10.3390/app8050827-
dc.description.abstractIn this study, we propose a face recognition scheme using local Zernike moments (LZM), which can be used for both identification and verification. In this scheme, local patches around the landmarks are extracted from the complex components obtained by LZM transformation. Then, phase magnitude histograms are constructed within these patches to create descriptors for face images. An image pyramid is utilized to extract features at multiple scales, and the descriptors are constructed for each image in this pyramid. We used three different public datasets to examine the performance of the proposed method:Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and Surveillance Cameras Face (SCface). The results revealed that the proposed method is robust against variations such as illumination, facial expression, and pose. Aside from this, it can be used for low-resolution face images acquired in uncontrolled environments or in the infrared spectrum. Experimental results show that our method outperforms state-of-the-art methods on FERET and SCface datasets.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFace recognitionen_US
dc.subjectFace verificationen_US
dc.subjectLocal descriptorsen_US
dc.subjectFace identificationen_US
dc.subjectLocal zernike momentsen_US
dc.titleAn Efficient Multiscale Scheme Using Local Zernike Moments for Face Recognitionen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app8050827-
dc.identifier.scopus2-s2.0-85047264112en_US
dc.authoridMuhittin Gökmen / 7772-
dc.authoridMuhittin Gökmen / 0000-0001-7290-199X-
dc.description.woscitationindexScience Citation Index Expanded-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthMayısen_US
dc.description.WoSIndexDate2018en_US
dc.description.WoSYOKperiodYÖK - 2017-18en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.startpage827en_US
dc.identifier.issue5en_US
dc.identifier.volume8en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000437326800174en_US
dc.institutionauthorGökmen, Muhittin-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
applsci-08-00827.pdfYayıncı Sürümü - Makale3.48 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 23, 2024

Page view(s)

62
checked on Nov 25, 2024

Download(s)

14
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.