Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/407
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kalayeh, Mahdi M | - |
dc.contributor.author | Başaran, Emrah | - |
dc.contributor.author | Shah, Mubarak | - |
dc.contributor.author | Kamasak, Mustafa E | - |
dc.contributor.author | Gökmen, Muhittin | - |
dc.date.accessioned | 2019-02-20T14:09:29Z | |
dc.date.available | 2019-02-20T14:09:29Z | |
dc.date.issued | 2018 | - |
dc.identifier.citation | Mahdi M. Kalayeh, Emrah Basaran, Muhittin Gökmen, Mustafa E. Kamasak, Mubarak Shah; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1062-1071 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/407 | - |
dc.identifier.uri | https://bit.ly/2GAu7vS | - |
dc.description.abstract | Person re-identification is a challenging task mainly dueto factors such as background clutter, pose, illuminationand camera point of view variations. These elements hinder the process of extracting robust and discriminative representations, hence preventing different identities from being successfully distinguished. To improve the representation learning, usually local features from human body partsare extracted. However, the common practice for such aprocess has been based on bounding box part detection.In this paper, we propose to adopt human semantic parsing which, due to its pixel-level accuracy and capabilityof modeling arbitrary contours, is naturally a better alternative. Our proposed SPReID integrates human semanticparsing in person re-identification and not only considerably outperforms its counter baseline, but achieves stateof-the-art performance. We also show that, by employinga simple yet effective training strategy, standard populardeep convolutional architectures such as Inception-V3 andResNet-152, with no modification, while operating solelyon full image, can dramatically outperform current stateof-the-art. Our proposed methods improve state-of-the-artperson re-identification on: Market-1501 [48] by ~17% inmAP and ~6% in rank-1, CUHK03 [24] by ~4% in rank-1and DukeMTMC-reID [50] by ~24% in mAP and ~10% inrank-1. | en_US |
dc.description.sponsorship | Computer Vision Foundation | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | IEEE Conference on Computer Vision and Pattern Recognition (CVPR) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Person re-identification | en_US |
dc.title | Human Semantic Parsing for Person Re-Identification | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/CVPR.2018.00117 | - |
dc.identifier.scopus | 2-s2.0-85062847826 | en_US |
dc.authorid | Muhittin Gökmen / 0000-0001-7290-199X | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
dc.description.WoSDocumentType | Proceedings Paper | |
dc.description.WoSPublishedMonth | Haziran | en_US |
dc.description.WoSIndexDate | 2018 | en_US |
dc.description.WoSYOKperiod | YÖK - 2017-18 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.endpage | 1071 | en_US |
dc.identifier.startpage | 1062 | en_US |
dc.identifier.issue | 2018 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:000457843601020 | en_US |
dc.institutionauthor | Gökmen, Muhittin | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kalayeh_Human_Semantic_Parsing_CVPR_2018_paper.pdf | Yayıncı Sürümü - Proceedings Paper | 1.77 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
578
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
477
checked on Nov 16, 2024
Page view(s)
68
checked on Nov 18, 2024
Download(s)
14
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.