Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/407
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalayeh, Mahdi M-
dc.contributor.authorBaşaran, Emrah-
dc.contributor.authorShah, Mubarak-
dc.contributor.authorKamasak, Mustafa E-
dc.contributor.authorGökmen, Muhittin-
dc.date.accessioned2019-02-20T14:09:29Z
dc.date.available2019-02-20T14:09:29Z
dc.date.issued2018-
dc.identifier.citationMahdi M. Kalayeh, Emrah Basaran, Muhittin Gökmen, Mustafa E. Kamasak, Mubarak Shah; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1062-1071en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/407-
dc.identifier.urihttps://bit.ly/2GAu7vS-
dc.description.abstractPerson re-identification is a challenging task mainly dueto factors such as background clutter, pose, illuminationand camera point of view variations. These elements hinder the process of extracting robust and discriminative representations, hence preventing different identities from being successfully distinguished. To improve the representation learning, usually local features from human body partsare extracted. However, the common practice for such aprocess has been based on bounding box part detection.In this paper, we propose to adopt human semantic parsing which, due to its pixel-level accuracy and capabilityof modeling arbitrary contours, is naturally a better alternative. Our proposed SPReID integrates human semanticparsing in person re-identification and not only considerably outperforms its counter baseline, but achieves stateof-the-art performance. We also show that, by employinga simple yet effective training strategy, standard populardeep convolutional architectures such as Inception-V3 andResNet-152, with no modification, while operating solelyon full image, can dramatically outperform current stateof-the-art. Our proposed methods improve state-of-the-artperson re-identification on: Market-1501 [48] by ~17% inmAP and ~6% in rank-1, CUHK03 [24] by ~4% in rank-1and DukeMTMC-reID [50] by ~24% in mAP and ~10% inrank-1.en_US
dc.description.sponsorshipComputer Vision Foundationen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer visionen_US
dc.subjectPerson re-identificationen_US
dc.titleHuman Semantic Parsing for Person Re-Identificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/CVPR.2018.00117-
dc.identifier.scopus2-s2.0-85062847826en_US
dc.authoridMuhittin Gökmen / 0000-0001-7290-199X-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSPublishedMonthHaziranen_US
dc.description.WoSIndexDate2018en_US
dc.description.WoSYOKperiodYÖK - 2017-18en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage1071en_US
dc.identifier.startpage1062en_US
dc.identifier.issue2018en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000457843601020en_US
dc.institutionauthorGökmen, Muhittin-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Kalayeh_Human_Semantic_Parsing_CVPR_2018_paper.pdfYayıncı Sürümü - Proceedings Paper1.77 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

578
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

477
checked on Nov 16, 2024

Page view(s)

68
checked on Nov 18, 2024

Download(s)

14
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.