Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUzun-Per, Meryem-
dc.contributor.authorGökmen, Muhittin-
dc.date.accessioned2019-02-20T14:24:08Z
dc.date.available2019-02-20T14:24:08Z
dc.date.issued2018-
dc.identifier.citationUzun-Per, M., & Gökmen, M. (February 01, 2018). Face recognition with Patch-based Local Walsh Transform. Signal Processing: Image Communication, 61, 85-96.en_US
dc.identifier.issn0923-5965-
dc.identifier.issn1879-2677-
dc.identifier.urihttps://doi.org/10.1016/j.image.2017.11.003-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/408-
dc.description.abstractIn this paper, we present a novel dense local image representation method called Local Walsh Transform (LWT)by applying the well-known Walsh Transform (WT) to each pixel of an image. The LWT decomposes an image into multiple components, and produces LWT complex images by using the symmetrical relationship between them. Cascaded LWT (CLWT) is also a dense local image representation obtained by applying the LWT again to real and imaginary parts of LWT complex images. Applying the LWT once more to real and imaginary parts of LWT complex images increases the success rate especially on low resolution images. In order to combine the advantages of sparse and dense local image representations, we present Patch-based LWT (PLWT) and Patch-based CLWT (PCLWT) by applying the LWT and CLWT, respectively, to patches extracted around landmarks of multi-scaled face images. The extracted high dimensional features of the patches are reduced through the application of the Whitened Principal Component Analysis (WPCA). Experimental results show that both thePLWT and PCLWT are robust to illumination and expression changes, occlusion and low resolution. The state-of-the-art performance is achieved on the FERET and SCface databases, and the second best unsupervised category result is achieved on the LFW database.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSignal Processing: Image Communicationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFace recognitionen_US
dc.subjectWalsh transformen_US
dc.subjectLocal representationsen_US
dc.titleFace Recognition With Patch-Based Local Walsh Transformen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.image.2017.11.003-
dc.identifier.scopus2-s2.0-85036467948en_US
dc.authoridMuhittin Gökmen / 0000-0001-7290-199X-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ2-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthŞubaten_US
dc.description.WoSIndexDate2018en_US
dc.description.WoSYOKperiodYÖK - 2017-18en_US
dc.identifier.scopusqualityQ1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage96en_US
dc.identifier.startpage85en_US
dc.identifier.volume61en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000423897400008en_US
dc.institutionauthorGökmen, Muhittin-
item.grantfulltextembargo_20890211-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Uzun-per-2018-Face-recognition-with-patch-based-l.pdf
  Until 2089-02-11
Yayıncı Sürümü - Makale4.21 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 23, 2024

Page view(s)

66
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.