Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArısoy, Ebru-
dc.contributor.authorSaraçlar, Murat-
dc.contributor.authorDikici, Erinc-
dc.date.accessioned2019-02-28T13:04:26Z
dc.date.accessioned2019-02-28T11:08:16Z
dc.date.available2019-02-28T13:04:26Z
dc.date.available2019-02-28T11:08:16Z
dc.date.issued2015-
dc.identifier.citationSaraclar, M., Dikici, E., & Arisoy, E. (SEP 20-24, 2015). A Decade of Discriminative Language Modeling for Automatic Speech Recognition. 17th International Conference on Speech and Computer (SPECOM) Location: Athens, GREECE. 9319. p. 11-22.en_US
dc.identifier.issn0302-9743-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/648-
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-23132-7_2-
dc.description##nofulltext##en_US
dc.descriptionEbru Arısoy (MEF Author)en_US
dc.description.abstractThis paper summarizes the research on discriminative language modeling focusing on its application to automatic speech recognition (ASR). A discriminative language model (DLM) is typically a linear or log-linear model consisting of a weight vector associated with a feature vector representation of a sentence. This flexible representation can include linguistically and statistically motivated features that incorporate morphological and syntactic information. At test time, DLMs are used to rerank the output of an ASR system, represented as an N-best list or lattice. During training, both negative and positive examples are used with the aim of directly optimizing the error rate. Various machine learning methods, including the structured perceptron, large margin methods and maximum regularized conditional log-likelihood, have been used for estimating the parameters of DLMs. Typically positive examples for DLM training come from the manual transcriptions of acoustic data while the negative examples are obtained by processing the same acoustic data with an ASR system. Recent research generalizes DLM training by either using automatic transcriptions for the positive examples or simulating the negative examples.en_US
dc.language.isoenen_US
dc.relation.ispartofConference: Speech And Computer (Specom 2015), 17th International Conference on Speech and Computer (SPECOM) Location: Athens, GREECE Date: SEP 20-24, 2015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDiscriminative trainingen_US
dc.subjectLanguage modelingen_US
dc.subjectAutomatic speech recognitionen_US
dc.titleA Decade of Discriminative Language Modeling for Automatic Speech Recognitionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-319-23132-7_2-
dc.identifier.scopus2-s2.0-84945969170en_US
dc.authoridEbru Arısoy / 0000-0002-8311-3611-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSPublishedMonthEylülen_US
dc.description.WoSIndexDate2015en_US
dc.description.WoSYOKperiodYÖK - 2015-16en_US
dc.identifier.scopusqualityQ3-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage22en_US
dc.identifier.startpage11en_US
dc.identifier.volume9319en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000365866300002en_US
dc.institutionauthorArısoy, Ebru-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

Page view(s)

28
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.