Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/658
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKupiec, Paul-
dc.contributor.authorGüntay, Levent-
dc.date.accessioned2019-02-28T13:04:26Z
dc.date.accessioned2019-02-28T11:08:17Z
dc.date.available2019-02-28T13:04:26Z
dc.date.available2019-02-28T11:08:17Z
dc.date.issued2016-
dc.identifier.citationKupiec, P. & Guntay, L.(2016).Testing for Systemic Risk Using Stock Returns.Journal Of Financial Services Research. 49, 2_3, p. 203-227.en_US
dc.identifier.issn1573-0735-
dc.identifier.issn0920-8550-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/658-
dc.identifier.urihttp://dx.doi.org/10.1007/s10693-016-0254-1-
dc.descriptionLevent Güntay (MEF Author)en_US
dc.description.abstractThe literature proposes several stock return-based measures of systemic risk but does not include a classical hypothesis tests for detecting systemic risk. Using a joint null hypothesis of Gaussian returns and the absence of systemic risk, we develop a hypothesis test statistic to detect systemic risk in stock returns data. We apply our tests on conditional value-at-risk (CoVaR) and marginal expected shortfall (MES) estimates of the 50 largest US financial institutions using daily stock return data between 2006 and 2007. The CoVaR test identifies only one institution as systemically important while the MES test identifies 27 firms including some of the financial institutions that experienced distress in the past financial crisis. We perform a simulation analysis to assess the reliability of our proposed test statistics and find that our hypothesis tests have weak power, especially tests using CoVaR. We trace the power issue to the inherent variability of the nonparametric CoVaR and MES estimators that have been proposed in the literature. These estimators have large standard errors that increase as the tail dependence in stock returns strengthens.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal Of Financial Services Researchen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSystemically important financial institutionsen_US
dc.subjectConditional value at risken_US
dc.subjectMarginal expected shortfallen_US
dc.subjectSystemic risken_US
dc.subjectSrisken_US
dc.subjectMesen_US
dc.subjectCovaren_US
dc.subjectSifisen_US
dc.titleTesting for Systemic Risk Using Stock Returnsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10693-016-0254-1-
dc.identifier.scopus2-s2.0-84975728106-
dc.description.woscitationindexSocial Science Citation Indexen_US
dc.identifier.wosqualityQ4-
dc.description.WoSDocumentTypeArticle-
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılan - EVETen_US
dc.description.WoSPublishedMonthHaziranen_US
dc.description.WoSIndexDate2016en_US
dc.description.WoSYOKperiodYÖK - 2015-16en_US
dc.identifier.scopusqualityQ3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage227en_US
dc.identifier.startpage203en_US
dc.identifier.issue2_3en_US
dc.identifier.volume49en_US
dc.departmentİİSBF, İşletme Bölümüen_US
dc.identifier.wosWOS:000378149400004-
dc.institutionauthorGüntay, Levent-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20890214-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Business Administration-
Appears in Collections:İşletme Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
WOS000378149400004.pdf
  Until 2089-02-14
Yayıncı Sürümü - Makale960.89 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Jan 18, 2025

WEB OF SCIENCETM
Citations

18
checked on Jan 18, 2025

Page view(s)

42
checked on Jan 13, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.