Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCamgoz, Necati Cihan-
dc.contributor.authorGökberk, Berk-
dc.contributor.authorAkarun, Lale-
dc.contributor.authorStruc, Vitomir-
dc.contributor.authorKindiroglu, Ahmet Alp-
dc.date.accessioned2019-02-28T13:04:26Z
dc.date.accessioned2019-02-28T11:08:17Z
dc.date.available2019-02-28T13:04:26Z
dc.date.available2019-02-28T11:08:17Z
dc.date.issued2015-
dc.identifier.citationCamgo?z, N. C., Struc, V., Gokberk, B., Akarun, L., & Kindirog?lu, A. A. (2015). Facial landmark localization in depth images using supervised ridge descent. Conference: IEEE International Conference on Computer Vision Workshops Location: santigo, CHILE. p. 378-383.en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICCVW.2015.57-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/659-
dc.descriptionBerk Gökberk (MEF Author)en_US
dc.description.abstractSupervised Descent Method (SDM) has proven successful in many computer vision applications such as face alignment, tracking and camera calibration. Recent studies which used SDM, achieved state of the-art performance on facial landmark localization in depth images [4]. In this study, we propose to use ridge regression instead of least squares regression for learning the SDM, and to change feature sizes in each iteration, effectively turning the landmark search into a coarse to fine process. We apply the proposed method to facial landmark localization on the Bosphorus 3D Face Database; using frontal depth images with no occlusion. Experimental results confirm that both ridge regression and using adaptive feature sizes improve the localization accuracy considerably.en_US
dc.language.isoenen_US
dc.relation.ispartofConference: IEEE International Conference on Computer Vision Workshops Location: santigo, CHILE Date: DEC 11-18, 2015en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject3d face analysis ???(key plus)en_US
dc.titleFacial Landmark Localization in Depth Images Using Supervised Ridge Descenten_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICCVW.2015.57-
dc.identifier.scopus2-s2.0-84961990497en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSPublishedMonthAralıken_US
dc.description.WoSIndexDate2015en_US
dc.description.WoSYOKperiodYÖK - 2015-16en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage383en_US
dc.identifier.startpage378en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000380434700048en_US
dc.institutionauthorCamgoz, Necati Cihan-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
WOS000380434700048_Acik.pdfYayıncı Sürümü - Makale806.91 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 23, 2024

Page view(s)

12
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.