Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaraçlar, Murat-
dc.contributor.authorArısoy, Ebru-
dc.date.accessioned2019-02-28T13:04:26Z
dc.date.accessioned2019-02-28T11:08:17Z
dc.date.available2019-02-28T13:04:26Z
dc.date.available2019-02-28T11:08:17Z
dc.date.issued2015-
dc.identifier.citationArisoy, E., Saraclar, M., (2015). Multi-stream long short-term memory neural network language model. Conference: 16th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2015) Location: Dresden, GERMANY, vol: 1-5. p. 1413-1417.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/665-
dc.descriptionEbru Arısoy (MEF Author)en_US
dc.description.abstractLong Short-Term Memory (LSTM) neural networks are recurrent neural networks that contain memory units that can store contextual information from past inputs for arbitrary amounts of time. A typical LSTM neural network language model is trained by feeding an input sequence. i.e., a stream of words, to the input layer of the network and the output layer predicts the probability of the next word given the past inputs in the sequence. In this paper we introduce a multi-stream LSTM neural network language model where multiple asynchronous input sequences are fed to the network as parallel streams while predicting the output word sequence. For our experiments, we use a sub-word sequence in addition to a word sequence as the input streams, which allows joint training of the LSTM neural network language model using both information sources.en_US
dc.language.isoenen_US
dc.relation.ispartofConference: 16th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2015) Location: Dresden, GERMANY Date: SEP 06-10, 2015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLong short-term memoryen_US
dc.subjectSub-word-based language modelingen_US
dc.subjectLanguage modelingen_US
dc.titleMulti-Stream Long Short-Term Memory Neural Network Language Modelen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-84959116680en_US
dc.authoridEbru Arısoy / 0000-0002-8311-3611-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSPublishedMonthEylülen_US
dc.description.WoSIndexDate2015en_US
dc.description.WoSYOKperiodYÖK - 2015-16en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage1417en_US
dc.identifier.startpage1413en_US
dc.identifier.volume1_5en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000380581600296en_US
dc.institutionauthorArısoy, Ebru-
item.grantfulltextembargo_20890214-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Multi-Stream Long Short-Term Memory Neural Network Language Model.pdf
  Until 2089-02-14
Konferans Dosyası231.92 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Oct 11, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 16, 2024

Page view(s)

26
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.