Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Author "Akçay, Ahmet"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 5High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis(IEEE, 2023) Çakar, Tuna; Ertuğrul, Seyit; Arslan, Şuayip; Sayar, Alperen; Akçay, AhmetThis research focuses on monitoring and transferring logs of operations performed on a relational database, specifically PostgreSQL, in real-time using an event-driven approach. The logs generated from database operations are transferred using Apache Kafka, an open-source message queuing system, and Debezium running on Kafka, to Redis, a non-relational (No-SQL) key-value database. Time-consuming query operations and read operations are performed on Redis, which operates on memory (in-memory), instead of on the primary database, PostgreSQL. This approach has significantly improved query execution performance, data processing time, and backend service performance. The study showcases the practical application of an event-driven approach using Debezium, Kafka, Redis, and relational databases for real-time data processing and querying.Conference Object Citation - Scopus: 2Segmentation for Factoring Customers: Using Unsupervised Machine Learning Algorithms(IEEE, 2023) Yalçuva, Berat; Akçay, Ahmet; Ertuğrul, Seyit; Çakar, Tuna; Sayar, Alperen; Ayyıldız, Nur SeherNowadays the fact that technology facilitates data collection is an important opportunity, as well as making the management of all this data difficult and makes no sense unless it is well processed. This stored data is extremely important, and companies use data provided by their customers. Catching the needs of the customer profiles of the changing world is now a necessity and takes the first place for companies. With the increase in the amount of stored data over time, it has become difficult to establish a relationship between the data and to separate them from each other. At this point, machine learning methods have become more involved in our lives. In this study, what segmentation is and its change over the years are mentioned. It has been mentioned which machine learning techniques will be useful in data selection. Then, possible machine learning methods are shown in real life segmentation problem by using the domestic factoring company’s customer check data. Since this study aims to group unlabeled data, unsupervised learning techniques are emphasized. Among these methods, Hierarchical Clustering, DBSCAN, Gaussian Mixture Modeling methods, Fuzzy c- Means were used as well as the most popular K-Means algorithm. When the clustering results were examined, the optimal number of clusters was calculated very high with GMM, DBSCAN could not assign clusters, and Hierarchical clustering could not produce expected results. It was observed that the best results were obtained with the K-Means and Fuzzy c - Means algorithms.Conference Object Transaction Volume Estimation in Financial Markets With Lstm(IEEE, 2023) Bozkan, Tunahan; Çakar, Tuna; Ertuğrul, Seyit; Sayar, Alperen; Akçay, AhmetIn this study, it was aimed to determine the transaction volume that will be encountered in the future (hourly) in the factoring sector, and then to take financial and operational action early. For the study, the LSTM model, which is a kind of recurrent neural network (RNN) that can capture long and short-term dependencies, was applied by using data-driven approaches to estimate the check amounts of hourly transactions. As a result of the results, it was aimed to increase the operational efficiency in a broad scope by allowing the factoring company to determine the loan amounts to be obtained from banks in the most optimal way, and then to take early action within the scope of both the workforce and business management of the financial resource allocation management process and operational activities. MAPE score was used as a measure of error in the time series analysis model. MAPE scores were found as %5.05 for 30 days, %4.18 for 10 days, %3.47 for 5 days, %3.09 for 3 days and %1.83 for 1 day. According to the MAPE scores calculated for different days, the enterprise will be able to decide on the loan to be drawn from banks both in terms of time and amount, and the necessary action will be taken.