Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Journal "2022 7th International Conference on Computer Science and Engineering (UBMK)"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Conference Object Eaft: Evolutionary Algorithms for Gcc Flag Tuning(IEEE, 2022) Tagtekin, Burak; Çakar, TunaDue to limited resources, some methods come to the fore in finding and applying the factors that affect the working time of the code. The most common one is choosing the correct GCC flags using heuristic algorithms. For the codes compiled with GCC, the selection of optimization flags directly affects the speed of the processing, however, choosing the right one among hundreds of markers during this process is a resource consuming problem. This article explains how to solve the GCC flag optimization problem with EAFT. Rather than other autotuner tools such as Opentuner, EAFT is an optimized tool for GCC marker selection. Search infrastructure has been developed with particle swarm optimization and genetic algorithm with diffent submodels rather than using only Genetic Algorithm like FOGA. © 2022 IEEE.Conference Object Citation - Scopus: 2Emg-Based Bci for Picar Mobilization(IEEE, 2022) Yilmaz, Yasin; Günden, Burak Bahri; Ertekin, Efe; Sayar, Alperen; Çakar, Tuna; Arslan, Şefik ŞuaybIn this study, the main scope was to develop a brain-computer interface (BCI) with the use of PiCar and EEG/ERP devices. Thus, it is aimed to facilitate the lives of people with certain diseases and disabilities. The ultimate goal of this project has been to direct and control a BCI-based PiCar concerning the signals captured via the EEG/ERP device. With the EEG headset, the EMG signals of the gestures (facial expressions) of the participant were captured. With the collected data, filtering and other preprocessing methods were applied to have noise-free signals. In the preprocessing, the detrending method was used to clean the data set which showed a constantly increasing trend, to a certain range, and zero trends. The denoising (Wavelet Denoising) and outlier detection/elimination methods (OneClassSVM) were used for noise elimination. The SMOTE oversampling method was used for data augmentation. Welch's method was used to get band powers from the signals. With the use of augmented data, several machine learning algorithms were applied such as Support Vector Machine, Logistic Regression, Linear Discriminant Analysis, Random forest Classifier, Gradient Boosting Classifier, Multinomial Naive Bayes, Decision tree, K-Nearest Neighbor, and voting classifier. The developed models were used to predict the direction that is passed as an input to PiCar's API. After that, PiCar was controlled concerning the predicted direction with HTTP GET requests. In this project, the OpenBCI headset and the Brainflow library for EEG/EMG signal obtaining and processing were used. Also, the Tkinter library was used for the Graphical user interface and Django for establishing a server on PiCar's brain which is RaspberryPi. © 2022 IEEE.Conference Object Model for Estimating the Probability of a Customer To Have a Transaction(IEEE, 2022) Sayar Alperen; Çakar Tuna; Ertugrul Seyit; Bozkan TunahanIn this study, it is aimed to estimate the probability of a customer who comes to the institution for the first time to make a transaction in the next 3 months, using data-driven machine learning models, in order to provide financing to the seller company by assigning the receivables arising from the sale of goods and services in a company actively operating in the factoring sector. Accordingly, it was aimed to directly contribute to the transaction volume on a business basis by acting and taking action with more effective, efficient and correct approaches by finding high-potential and low-potential customers. In this context, provided by KKB (Credit Registration Bureau); The data set to he used in machine learning models was created with feature engineering and exploratory data analysis, using the Risk, Mersis, GIB information of the prospective customers and the historical information of the customers, check issuers, customer representatives and branches kept in the database. Since the leads coming to the institution are in two different types of organizations (Individual and Legal), two different forecasting models were applied. Multiple classification models were tried, and the highest F1-Score of 86% for private companies was obtained with the Random Forest model, and the highest F1- Score for commercial companies was obtained with the Random Forest model with 82%. © 2022 IEEE.Conference Object Citation - Scopus: 1Modeling Consumer Creditworthiness Via Psychometric Scale and Machine Learning(IEEE, 2022) Çakar, Tuna; Ertugrul, Seyit; Sayar, Alperen; Sahin, Türkay; Bozkan, TunahanAlthough the predictive power of economic metrics to detect the creditworthiness of the customers is high, there is a rising interest in the integration of cognitive, psychological, behavioral, alternative, and demographic data into credit risk systems and processing the data through modern methods. The primary motivation for the rising interest is increased customer classification accuracy. In this research, customer creditworthiness was modeled through data consisting of personality, money attitudes, impulsivity, self-esteem, self-control, and material values and processed through artificial intelligence. The obtained findings have been evaluated as a reference point for the following research. © 2022 IEEE.Conference Object Citation - Scopus: 2Ssqem: Semi-Supervised Quantum Error Mitigation(IEEE, 2022) Sayar, Alperen; Arslan Suayb S.; Çakar TunaOne of the fundamental obstacles for quantum computation (especially in noisy intermediate-scale quantum (NISQ) era) to be a near-term reality is the manufacturing gate/measurement technologies that make the system state quite fragile due to decoherence. As the world we live in is quite far away from the ideal, complex particle-level material imperfections due to interactions with the environment are an inevitable part of the computation process. Hence keeping the accurate state of the particles involved in the computation becomes almost impossible. In this study, we posit that any physical quantum computer sys-tem manifests more multiple error source processes as the number of qubits as well as depth of the circuit increase. Accordingly, we propose a semi-supervised quantum error mitigation technique consisting of two separate stages each based on an unsupervised and a supervised machine learning model, respectively. The proposed scheme initially learns the error types/processes and then compensates the error due to data processing and the projective measurement all in the computational basis. © 2022 IEEE.Conference Object Citation - Scopus: 7Steel Surface Defect Classification Via Deep Learning(IEEE, 2022) Yildiz, Ahmet; Çakar, Tuna; Tunal, Mustafa MertDeep learning and image processing methods have taken place in many parts of our lives, as well as in the quality control stages of production lines. The aim of this study is to train and use a deep learning model to improve quality management using limited data and computing power. To achieve that, deep learning for quality control models were trained by classifying six different steel surface defect images in the NEU-DET dataset. Xception, ResNetV2 152, VGG19 and InceptionV3 architectures were used to train the model. High accuracy was obtained with both Xception and ResNetV2 152. © 2022 IEEE.