Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Journal "2023 4th International Informatics and Software Engineering Conference (IISEC)"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 1Analytical Approaches in Customer Relationship Management(IEEE, 2023) Akata, Mustafa Aşkım; Ergin, Kaan; Kaya, Büşra; Kızılay, Ayşe; Çakar, Tuna; Şahin, ZeynepThis study examines the impact of analytical customer relationship management (aCRM) strategies, specifically the segmentation approach using RFM analysis and artificial learning methods, on customer satisfaction, revenue performance, and loyalty in businesses. The research adopts an approach that integrates data from both online and offline channels onto a single platform, providing a holistic view of customer behaviors. Combining the segmentation obtained through RFM analysis and artificial learning methods with timely campaigns has enhanced shopping opportunities for customers and increased customer satisfaction and loyalty. The use of aCRM as a strategic marketing and sales tool has enabled businesses to manage customer relationships more effectively. This paper contributes to the literature in this field by presenting in detail the advantages offered by aCRM, its application methods, and the results obtained.Conference Object Analyzing Customer Churn: a Comparative Study of Machine Learning Models on Pay-Tv Subscribers in Turkey(IEEE, 2023) Obalı, Emir; Çalışkan, Sibel Kırmızıgül; Karani Yılmaz, Veysel; Kara, Erkan; Meşe, Yasemin Kürtcü; Çakar, Tuna; Yıldız, Ayşenur; Hataş, Tuğce AydınUnderstanding the reasons for customer churn provides added value in terms of retaining existing customers, as customer attrition leads to revenue loss for companies and incurs marketing costs for acquiring new customers. In this study, the 6-month historical data of a Pay-TV company operating in Turkey was used, and due to the imbalanced nature of the dataset on a label basis, the oversampling method was applied. During the model development phase, various artificial learning algorithms (Random Forest, Logistic Regression, KNearest Neighbors, Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier) were utilized, and their performances were compared. Based on the evaluation of success criteria for each model, it was observed that the tree-based Random Forest, Extra Tree Classifier and XGBoost achieved the highest performance for this dataset.Conference Object Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines(IEEE, 2023) Çakar, Tuna; Savaş, Kerem; Battal, Eray; Özkan, GözdeIn this study, a model has been developed to predict potential faults in advance based on performance metrics of various fiber-optic internet lines, as well as alarm (fault data) and performance measurement values from the 5 hours prior to the occurrence of the alarm. Performance metrics that vary over time have been analyzed in a time-series format based on alarm numbers, and anomaly detection methods have been used to label the data for any potential patterns that may occur in the performance metrics specific to the alarm. The labeled data was then fed into a classification model to create a model that enables to detect possible patterns in the relevant performance values for the specific fault type. The best performing model was Random Forest Classifier with accuracy and F1 scores of 0.89 and 0.84 respectively.Conference Object Citation - Scopus: 2Grafraud: Fraud Detection Using Graph Databases and Neural Networks(IEEE, 2023) Raina, Ajeet Singh; Çakar, Tuna; Ertuğrul, Seyit; Arslan, Şuayip; Sayar, AlperenThe issue of fraud has become a significant concern for many companies, particularly in the finance sector, but the traditional methods of detecting fraud are no longer adequate. Innovative technologies are necessary to identify complex fraudulent activities, and RedisGraph, a high-performance graph database, may offer a solution. With the assistance of neural networks, RedisGraph can accurately and efficiently detect fraudulent transactions in vast and intricate environments. Companies typically use a combination of Python and Oracle Databases to design fraud detection systems. which provide robust data management and real time AI processing capabilities. These technologies allow to create fraud detection systems that can determine fraudulent activities in real-time. But according to advancements of fraud methods only using of these systems not efficient nowadays. This article presents a proof of concept based on an essential use case of RedisGraph-powered neural networks in detecting financial fraud. It demonstrates the value of carefully employing Python and Oracle Database to construct and deploy real-time systems that can efficiently detect fraudulent activities.Conference Object Optimizing Collective Building Management Through a Machine Learning-Based Decision Support System(IEEE, 2023) Güvençli, Mert; Dağ, Hasan; Doğan, Erkan; Çakar, Tuna; Özyürüyen, Burcu; Kiran, HalilThis study presents the design, implementation, and evaluation of a Decision Support System (DSS) developed for Collective Building Management. Given the potential advantages of machine learning techniques in this domain, the research explores how these techniques can be used to improve collective building management. The dataset consists of 824,932 records and 15 attributes, after preprocessing the data to fill in missing values with the median. The random forest algorithm was chosen for model training and achieved a performance rate of 71.2%. This model can be used to optimize decision processes in collective building management. The proposed prototype is notable for its ability to automatically generate operational plans. In conclusion, machine learning-based DSSs are effective tools for collective building management.