Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Journal "2023 Innovations in Intelligent Systems and Applications Conference (ASYU)"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Conference Object Analyzing Consumer Behavior: the Impact of Retro Music in Advertisements on a Chocolate Brand and Consumer Engagement(IEEE, 2023) Girişken, Yener; Soyaltın, Tuğçe Ezgi; Filiz, Gözde; Çakar, Tuna; Türkyılmaz, Ceyda AysunaThis study presents research utilizing binary classification models to analyze consumer behaviors such as chocolate consumption and retro music ad viewing. Retro music, with its potential to evoke nostalgic feelings in consumers, is used in advertisements, which can have a significant impact on brand perception and consumer engagement. Firstly, a model focusing on chocolate consumption was developed and tested. The model yields significant outcomes. Secondly, a model based on retro music ad viewing status was developed and tested. Significant potential findings were obtained. This study emphasizes the applicability of effective classification models that can be used to understand and predict consumer behaviors, yielding significant outcomes.Conference Object Citation - Scopus: 5High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis(IEEE, 2023) Çakar, Tuna; Ertuğrul, Seyit; Arslan, Şuayip; Sayar, Alperen; Akçay, AhmetThis research focuses on monitoring and transferring logs of operations performed on a relational database, specifically PostgreSQL, in real-time using an event-driven approach. The logs generated from database operations are transferred using Apache Kafka, an open-source message queuing system, and Debezium running on Kafka, to Redis, a non-relational (No-SQL) key-value database. Time-consuming query operations and read operations are performed on Redis, which operates on memory (in-memory), instead of on the primary database, PostgreSQL. This approach has significantly improved query execution performance, data processing time, and backend service performance. The study showcases the practical application of an event-driven approach using Debezium, Kafka, Redis, and relational databases for real-time data processing and querying.Conference Object Citation - Scopus: 2Segmentation for Factoring Customers: Using Unsupervised Machine Learning Algorithms(IEEE, 2023) Yalçuva, Berat; Akçay, Ahmet; Ertuğrul, Seyit; Çakar, Tuna; Sayar, Alperen; Ayyıldız, Nur SeherNowadays the fact that technology facilitates data collection is an important opportunity, as well as making the management of all this data difficult and makes no sense unless it is well processed. This stored data is extremely important, and companies use data provided by their customers. Catching the needs of the customer profiles of the changing world is now a necessity and takes the first place for companies. With the increase in the amount of stored data over time, it has become difficult to establish a relationship between the data and to separate them from each other. At this point, machine learning methods have become more involved in our lives. In this study, what segmentation is and its change over the years are mentioned. It has been mentioned which machine learning techniques will be useful in data selection. Then, possible machine learning methods are shown in real life segmentation problem by using the domestic factoring company’s customer check data. Since this study aims to group unlabeled data, unsupervised learning techniques are emphasized. Among these methods, Hierarchical Clustering, DBSCAN, Gaussian Mixture Modeling methods, Fuzzy c- Means were used as well as the most popular K-Means algorithm. When the clustering results were examined, the optimal number of clusters was calculated very high with GMM, DBSCAN could not assign clusters, and Hierarchical clustering could not produce expected results. It was observed that the best results were obtained with the K-Means and Fuzzy c - Means algorithms.