Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Journal "27th Signal Processing and Communications Applications Conference, SIU 2019"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 3An Xml Parser for Turkish Wikipedia(IEEE, 2019) Demir, Şeniz; Vardar, Uluç Furkan; Devran, İlkay TevfikNowadays, visual and written data that can be easily accessed over the internet has enabled the development of research in many different fields. However, the availability of data is not sufficient by itself. It is of great importance that these data can be effectively utilized and interpreted in accordance with the requirements. Access to written content in the Wikipedia encyclopedia, which is becoming increasingly common in Turkish natural language processing, can be done via XML dumps. In this study, our aim is to develop and demonstrate the applicability of an XML parser for the processing of Turkish Wikipedia dumps. The use of the open-source parser, which allows information extraction at different levels of granularity, is reported on pages containing biography infoboxes and textual contents.Conference Object Kernel Density Estimation for Optimal Detection in All-Bit Mlc Flash Memories(IEEE, 2019) Arslan, Şuayb Şefik; Ashraf, Reza A.; Pusane, Ali E.NAND flash memories have recently become the main component of large-scale non-volatile storage systems. Recent studies have shown that various error sources degrade the Multi-level cell (MLC) memory performance, including intercell interference, retention error, and random telegraph noise. Accurate integration of these error sources into the analytical model to optimally derive the governing probability distributions and consequently the detection thresholds to minimize error rates lie at the heart of MLC research. Utilizing static derivations will not address the detection problem, as aforementioned error sources exhibit a strong non-stationary behavior. In this paper, a novel low-complexity implementation of a non-parametric learning mechanism, kernel density estimation, shall be used to periodically estimate the underlying probability distributions and hence approximate the optimal detection performance for time-varying all-bit-line MLC flash channel.