Endüstri Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1942
Browse
Browsing Endüstri Mühendisliği Bölümü Koleksiyonu by Subject "Bilevel programming"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Book Part Citation - WoS: 12Citation - Scopus: 12Bilevel Models on the Competitive Facility Location Problem(Springer, 2017) Küçükaydın, Hande; Aras, NecatiFacility location and allocation problems have been a major area of research for decades, which has led to a vast and still growing literature. Although there are many variants of these problems, there exist two common features: finding the best locations for one or more facilities and allocating demand points to these facilities. A considerable number of studies assume a monopolistic viewpoint and formulate a mathematical model to optimize an objective function of a single decision maker. In contrast, competitive facility location (CFL) problem is based on the premise that there exist competition in the market among different firms. When one of the competing firms acts as the leader and the other firm, called the follower, reacts to the decision of the leader, a sequential-entry CFL problem is obtained, which gives rise to a Stackelberg type of game between two players. A successful and widely applied framework to formulate this type of CFL problems is bilevel programming (BP). In this chapter, the literature on BP models for CFL problems is reviewed, existing works are categorized with respect to defined criteria, and information is provided for each work.Article Determining the Most Vulnerable Components in a Transportatıon Network(Yıldız Technical University, 2018) Küçükaydın, Hande; Aras, NecatiTransportation networks belong to the class of critical infrastructure networks since a small deterioration in the service provision has the potential to cause considerable negative consequences on everyday activities. Among the reasons for the deterioration we can mention the shutdown of a subway station, the closure of one or more lanes on a bridge, the operation of an airport at a much reduced capacity. In order to measure the vulnerability of transportation network, it is necessary to determine the maximum possible disruption by assuming that there is an intelligent attacker wishing to give damage to the components of the network including the stations/stops and linkages. Identifying the worst disruptions can be realized by using interdiction models that are formulated by a bilevel mathematical programming model involving two decision makers: leader and follower. In this paper, we develop such a model referred to as attacker-operator model, where the leader is a virtual attacker who wants to cause the maximum possible disruption in the transportation network by minimizing the amount of flow among the nodes of the network, while the follower is the system operator who tries to reorganize the flow in the most effective way by maximizing the flow after the disruption. The benefit of such a model to the system operator is to determine the most vulnerable stations and linkages in the transportation network on one hand, and to take precautions in preventing the negative effects of the disruption on the other hand.