Endüstri Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1942
Browse
Browsing Endüstri Mühendisliği Bölümü Koleksiyonu by WoS Q "N/A"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Conference Object A Mathematical Programming-Based Approach for an Energy Investment Planning of a Private Company(2017) Ağralı, Semra...Book Part Citation - WoS: 12Citation - Scopus: 12Bilevel Models on the Competitive Facility Location Problem(Springer, 2017) Küçükaydın, Hande; Aras, NecatiFacility location and allocation problems have been a major area of research for decades, which has led to a vast and still growing literature. Although there are many variants of these problems, there exist two common features: finding the best locations for one or more facilities and allocating demand points to these facilities. A considerable number of studies assume a monopolistic viewpoint and formulate a mathematical model to optimize an objective function of a single decision maker. In contrast, competitive facility location (CFL) problem is based on the premise that there exist competition in the market among different firms. When one of the competing firms acts as the leader and the other firm, called the follower, reacts to the decision of the leader, a sequential-entry CFL problem is obtained, which gives rise to a Stackelberg type of game between two players. A successful and widely applied framework to formulate this type of CFL problems is bilevel programming (BP). In this chapter, the literature on BP models for CFL problems is reviewed, existing works are categorized with respect to defined criteria, and information is provided for each work.Article Büyük Ölçekli Etki Enbüyükleme Problemi için Lagrange Gevşetmesi Tabanlı Etkin Bir Çözüm Yöntemi(AKÜ FEMÜBİD, 2020) Güney, EvrenEtki Enbüyükleme Problemi (EEP) büyük bir sosyal ağ içindeki en etkin K tane kişiyi seçen zor bir stokastik kombinatoryal eniyileme problemidir. Son yıllarda pek çok araştırmacının ilgisini çeken bu problem için çok sayıda etkin yöntem geliştirilmiştir. Sosyal ağdaki bilginin / etkinin yayılımı çeşitli ağ akış modelleri ile tasarlandığında, elde edilen problemin amaç fonksiyonunun alt-birimsel olduğu gözlemlenmiştir. Bu sebeple basit bir açgözlü algoritma ile (1-1/e) en kötü performans garantisine erişilmiştir. Ancak, aç gözlü algoritmanın büyük boyutlu problemlerde çok uzun çözüm süreleri gerektirmesi alternatif yöntem arayışlarına neden olmuştur. Son yıllarda geliştirilen yeni yöntemler genelde büyük boyutlu ağlarda kısa sürede iyi çözümler elde ederken (1-1/e) performans garantisini de korumaktadır. Ancak pek az sayıda çalışma problemin sadece en-iyi çözümüne odaklanmıştır. Bu çalışmada Lagrange gevşetmesi tabanlı ve EEP’yi eniyi / eniyiye yakın çözen ve ölçeklenebilen bir yöntem geliştirilmiştir. Bu çerçevede, öncelikle Örneklem Ortalama Yakınsaması ile özgün probleme yakınsayan belirgin bir matematiksel model kurulmuştur. Daha sonra bu model üzerinde düğüm tabanlı Lagrange gevşetmesi tekniği uygulanmıştır. İlgili yöntem bağımsız çağlayan ve doğrusal eşik bilgi yayılım modelleri varsayımı altında çeşitli boyutlardaki sosyal ağ veri setleri (Facebook, Enron, Gnutella, arXiv) üzerinde test edilmiştir. Bütün senaryolarda eniyi / eniyiye yakın çözümlere ulaşılırken yazındaki mevcut yöntemlere göre on kata kadar hızlanma sağlanmıştır.Conference Object Capacity Allocation and Pricing Policies for Cloud Computing Service Providers(Curran Associates Inc., 2018) Ünlüyurt T.; Özgür Özlük; Afghah, R.The cloud computing is regarded as a paradigm shift in today’s IT world. As cloud computing resources behave like perishable products, revenue management techniques can be applied to increase cloud service provider's total revenue. In this paper, we propose various methods for pricing and capacity allocation. We consider three types of instances offered by the service provider; subscription, on-demand and spot instances. We introduce three allocation and pricing policies and propose different models. We simulate these models on a randomly generated dataset and evaluate the models for different capacities. The results we obtain indicate the sensitivity of revenue to varying policies and demonstrate the potential profit increase for cloud service providers. © 2018, Curran Associates Inc. All rights reserved.Conference Object Combining Acceleration Techniques for Pricing in a Vrp With Time Windows(2016) Michelini, S; Arda, Y; Küçükaydın, Hande...Book Part Customer Segmentation Using Rfm Analysis: Real Case Application on a Fuel Company(Emerald Publishing Limited., 2020) Ucal Sarı, İrem; Sergi, Duygu; Ozkan, BurcuCustomer segmentation is an important research area that helps organizations to improve their services according to customer needs. With the increased information that shows customer attitudes, it is much easier and also more necessary than before to analyze customer responses on different campaigns. Recency, frequency, and monetary (RFM) analysis allows us to segment customers according to their common features. In this chapter, customer segmentation and RFM analysis are explained first, then a real case application of RFM analysis on customer segmentation for a Fuel company is presented. At the end of the application part, possible strategies for the company are generated.Article Citation - Scopus: 1Determining and Evaluating New Store Locations Using Remote Sensing and Machine Learning(Tübitak, 2021) Ünsalan, Cem; Turgay, Zeynep Zerrin; Küçükaydın, Hande; Höke, BerkanDecision making for store locations is crucial for retail companies as the profit depends on the location. The key point for correct store location is profit approximation, which is highly dependent on population of the corresponding region, and hence, the volume of the residential area. Thus, estimating building volumes provides insight about the revenue if a new store is about to be opened there. Remote sensing through stereo/tri-stereo satellite images provides wide area coverage as well as adequate resolution for three dimensional reconstruction for volume estimation. We reconstruct 3D map of corresponding region with the help of semiglobal matching and mask R-CNN algorithms for this purpose. Using the existing store data, we construct models for estimating the revenue based on surrounding building volumes. In order to choose the right location, the suitable utility model, which calculates store revenues, shouldbe rigorously determined. Moreover, model parameters should be assessed as correctly as possible. Instead of using randomly generated parameters, we employ remote sensing, computer vision, and machine learning techniques, which provide a novel way for evaluating new store locations.Article Determining the Most Vulnerable Components in a Transportatıon Network(Yıldız Technical University, 2018) Küçükaydın, Hande; Aras, NecatiTransportation networks belong to the class of critical infrastructure networks since a small deterioration in the service provision has the potential to cause considerable negative consequences on everyday activities. Among the reasons for the deterioration we can mention the shutdown of a subway station, the closure of one or more lanes on a bridge, the operation of an airport at a much reduced capacity. In order to measure the vulnerability of transportation network, it is necessary to determine the maximum possible disruption by assuming that there is an intelligent attacker wishing to give damage to the components of the network including the stations/stops and linkages. Identifying the worst disruptions can be realized by using interdiction models that are formulated by a bilevel mathematical programming model involving two decision makers: leader and follower. In this paper, we develop such a model referred to as attacker-operator model, where the leader is a virtual attacker who wants to cause the maximum possible disruption in the transportation network by minimizing the amount of flow among the nodes of the network, while the follower is the system operator who tries to reorganize the flow in the most effective way by maximizing the flow after the disruption. The benefit of such a model to the system operator is to determine the most vulnerable stations and linkages in the transportation network on one hand, and to take precautions in preventing the negative effects of the disruption on the other hand.Conference Object Dialogue Enhancement Using Kernel Additive Modelling(Institute of Electrical and Electronics Engineers Inc., 2015) Liutkus, A.; Kırbız, Serap; Cemgil, A. TaylanIt is a major problem for the sound engineers to find the right balance between the dialogue signals and the ambient sources. This problem also makes one of the main causes of the audience concerns. The audience wants to arrange the sound balance based on their personal preferences, listening environment and their hearing. In this work, a method is proposed for enhancing the dialogue signals in stereo recordings that consist of more than one source. The kernel additive modelling that has been used successfully in sound source separation is used to extract the dialogues and the ambient sources from the movie sounds. The separated dialogue and ambient sources can later be upmixed by the user to make a personal mix. The separation performance of the proposed method is evaluated on the sounds generated by mixing the sources which were taken from the only dialogue and only music parts of the movies. It has been shown that the Kernel Additive Modelling (KAM) based method can be successfully used for dialogue enhancement. © 2015 IEEE.Article Citation - WoS: 1Facial Emotion Recognition Using Residual Neural Networks(2024) Kırbız, SerapFacial emotion recognition (FER) has been an emerging research topic in recent years. Recent automatic FER systems generally apply deep learning methods and focus on two important issues: lack of sufficient labeled training data and variations in images such as illumination, pose, or expression-related variations among different cultures. Although Convolutional Neural Networks (CNNs) are widely used in automatic FER, they cannot be used when the number of layers is large. Therefore, a residual technique is applied to CNNs and this architecture is named residual neural network. In this paper, an automatic facial emotion recognition method using residual networks with random data augmentation is proposed on a merged FER dataset consisting of 41,598 facial images of size 48 × 48 pixels from seven basic emotion classes. Experimental results show that ResNet34 with data augmentation performs better than CNN with a classification accuracy of 81%.Conference Object Citation - Scopus: 27Fuzzy Capital Budgeting Using Fermatean Fuzzy Sets(Springer, 2021) Sergi, Duygu; Sarı, İrem UcalInvestment projects are mostly evaluated by capital budgeting techniques to measure their profitability. The parameters used in capital budgeting such as future cash flows, interest rate and useful life involves high uncertainty due to the lack of information for the future environment. Since the uncertainty involved in forecasting the parameters is mostly in high levels, fuzzy set theory could be used in the determination of capital budgeting parameters to handle uncertain information in the analyses. Fermatean fuzzy sets are one of the most recent extensions of fuzzy set theory which are capable to handle higher levels of uncertainties by assigning fuzzy parameters from a larger domain. In this paper, fuzzy capital budgeting techniques that are fuzzy net present worth, fuzzy net future worth and fuzzy net annual worth are extended using fermatean fuzzy sets. An illustration for the calculations is also presented.Article Citation - WoS: 14Citation - Scopus: 16Gradual Covering Location Problem With Multi-Type Facilities Considering Customer Preferences(Elsevier, 2020) Küçükaydın, Hande; Aras, NecatiIn this paper, we address a discrete facility location problem where a retailer aims at locating new facilities with possibly different characteristics. Customers visit the facilities based on their preferences which are represented as probabilities. These probabilities are determined in a novel way by using a fuzzy clustering algorithm. It is assumed that the sum of the probabilities with which customers at a given demand zone patronize different types of facilities is equal to one. However, among the same type of facilities they choose the closest facility, and the strength at which this facility covers the customer is based on two distances referred to as full coverage distance and gradual (partial) coverage distance. If the distance between the customer location and the closest facility is smaller (larger) than the full (partial) coverage distance, this customer is fully (not) covered, whereas for all distance values between full and partial coverage, the customer is partially covered. Both distance values depend on both the customer attributes and the type of the facility. Furthermore, facilities can only be opened if their revenue exceeds a certain threshold value. A final restriction is incorporated into the model by defining a minimum separation distance between the same facility types. This restriction is also extended to the case where a minimum threshold distance exists among facilities of different types. The objective of the retailer is to find the optimal locations and types of the new facilities in order to maximize its profit. Two versions of the problem are formulated using integer linear programming, which differ according to whether the minimum separation distance applies to the same facility type or different facility types. The resulting integer linear programming models are solved by three approaches: commercial solver CPLEX, heuristics based on Lagrangean relaxation, and local search implemented with 1-Add and 1-Swap moves. Apart from experimentally assessing the accuracy and the efficiency of the solution methods on a set of randomly generated test instances, we also carry out sensitivity analysis using a real-world problem instance.Conference Object Heuristic Methods for a Capacitated Lot-Sizing Problem With Stochastic Setup Times(2015) Taş, Duygu...Article Müşteri Hizmetleri Bölümünde Süreç Analizi ve Stratejik Planlama- Lastik Sektöründe Bir Uygulama(Eskişehir Teknik Üniversitesi, 2020) Özuduruk, Semih Faruk; Sergi, Duygu; Sarı, İrem UcalBu çalışma kapsamında, bir işletmenin süreç analizinin yapılması ve sonrasında işletme stratejisinin oluşturulması için gerekli analiz ve stratejik yönetim modelleri incelenmiştir. Daha sonra, işletme geneli için incelenen bu yöntemler, bir işletme özelinde müşteri hizmetleri bölümüne uygulanmıştır. Çalışma kapsamında, öncelikle SWOT analizi ile iş biriminin içinde bulunduğu mevcut durumun özellikleri belirlenmiş, sonrasında oluşturulan Genişletilmiş SWOT matrisi ile ortaya çıkan faktörlere uygun stratejiler belirlenmiştir. Stratejiler belirlendikten sonra İç Faktör Değerlendirme ve Dış Faktör Değerlendirme matrisleri ile SWOT analizinde ortaya konan faktörler ağırlıklandırılarak puanlanmıştır. Oluşturulan puanlar, İç-Dış Faktörler matrisine yerleştirilerek işletmenin bulunduğu stratejik konum tayin edilmiştir. Son aşamada ise, seçilen stratejiye ulaşmak amacı ile Kurumsal Karne (Balanced Scorecard-BSC) yönteminden faydalanılarak oluşturulan stratejik harita üzerinde faktörler arası ilişkiler gösterilmiş ve alt stratejiler belirlenmiştir.Article Stokastik Süreler İçeren Kapasite Kısıtlı Parti Büyüklüğü Belirleme Problemi(EJOSAT - DergiPark, 2019) Taş, DuyguBu makalede üretim ve kurulum süreleri stokastik olan kapasite kısıtlı çok ürünlü dinamik parti büyüklüğü belirleme problemi ele alınmıştır. Bu problemde tüm sürelerin stokastik olduğu durum göz önünde bulundurularak hem verimli hem de güvenilir üretim planları elde edilmektedir. Ele alınan problemin amacı klasik üretim maliyetleri ve ek mesai maliyetlerinden oluşan toplam maliyeti en küçüklemektir. Klasik maliyetler, üretim, kurulum ve envanter tutmaktan kaynaklanmaktadır. Ek mesai maliyetleri ise makinenin zaman kapasitesini aşacak şekilde kullanılmasından dolayı ortaya çıkmaktadır. Öncelikle, belirli bir üretim ve kurulum planı için beklenen ek mesai süresini kesin olarak hesaplayan bir prosedür önerilmiştir. Problemi etkin bir şekilde çözmek için tabu algoritmasına dayanan bir çözüm yaklaşımı geliştirilmiştir. Bu yaklaşım üç aşamadan oluşmaktadır: Başlangıç, iyileştirme ve planlama. Algoritmanın ilk aşamasında olurlu planlar üreten bir başlangıç metodu önerilmiştir. Bulunan planlar makalede önerilen tabu arama metoduyla iyileştirilmektedir. Planlama aşamasında, yerel arama metodunun bulduğu çözümleri iyileştirmek için bir doğrusal programlama modeli geliştirilmiştir. Çözüm yöntemimizin performansı literatürde yayınlanmış alt sınırlar kullanılarak onaylanmıştır. Ayrıca, sonuçlar tabu arama yöntemimizin makul sürelerde çok iyi çözümler elde ederek iyi performans sergilediğini göstermektedir.Conference Object The Traveling Salesman Problem With Time-Dependent Service Times(2016) Taş, DuyguThis paper introduces a version of the classical traveling salesman problem with time-dependent service times. In our setting, the duration required to provide service to any customer is not fixed but defined as a function of the time at which service starts at that location. The objective is to minimize the total route duration, which consists of the total travel time plus the total service time. The proposed model can handle several types of service time functions, e.g., linear and quadratic functions. We describe basic properties for certain classes of service time functions, followed by the computation of valid lower and upper bounds. We apply several classes of subtour elimination constraints and measure their effect on the performance of our model. Numerical results obtained by implementing different linear and quadratic service time functions on several test instances are presented.
